
Creating a Custom Embedded Linux
Distribution for Any Embedded
Device Using the Yocto Project

Behan Webster
Converse in Code

Jan 21, 2016

1

Yocto Project Developer Day Jan 2016
Intro to Yocto Project

Yocto Project Overview
 Collection of tools and methods enabling

 Rapid evaluation of embedded Linux on
many popular off-the-shelf boards

 Easy customization of distribution
characteristics

 Supports x86, ARM, MIPS, Power
 Based on technology from the

OpenEmbedded Project
 Layer architecture allows for

easy re-use of code

4

meta (oe-core)meta (oe-core)

meta-yoctometa-yocto

meta-yocto-bspmeta-yocto-bsp

other layersother layers

What is the Yocto Project?
 Umbrella organization under Linux

Foundation
 Backed by many companies interested in

making Embedded Linux easier for the
industry

 Co-maintains OpenEmbedded Core and
other tools (including opkg)

5

Yocto Project Governance
Organized under the Linux Foundation

Split governance model

Technical Leadership Team

Advisory Board made up of participating
organizations

6

Yocto Project Overview
 YP builds packages - then uses these

packages to build bootable images
 Supports use of popular package

formats including:
 rpm, deb, ipk

 Releases on a 6-month cadence
 Latest (stable) kernel, toolchain and

packages, documentation
 App Development Tools including Eclipse

plugin, SDK, toaster

7

Yocto Project Release Versions
Major Version Releases

8

Name Revisio
n

Poky Release Date

Bernard 1.0 5.0 Apr 5, 2011

Edison 1.1 6.0 Oct 17, 2011

Denzil 1.2 7.0 Apr 30, 2012

Danny 1.3 8.0 Oct 24, 2012

Dylan 1.4 9.0 Apr 26, 2013

Dora 1.5 10.0 Oct 19, 2013

Daisy 1.6 11.0 Apr 24, 2014

Dizzy 1.7 12.0 Oct 31, 2014

Fido 1.8 13.0 April 22, 2015

Jethro 2.0 14.0 Oct 31, 2015

Yocto is based on OpenEmbedded-core

9

Metadata describing
approximately 900
popular "core" recipes
used for building boot
images. Includes
support for graphics, Qt,
networking, kernel
recipes, tools, much
more.

Intro to OpenEmbedded
The OpenEmbedded Project co-

maintains OE-core build system:
bitbake build tool and scripts
Metadata and configuration

Provides a central point for new
metadata (see the OE Layer index)

10

What is Bitbake?
Bitbake

Powerful and flexible
build engine (Python)

Reads metadata…
…determines

dependencies and
schedules tasks

11

Metadata – a structured
collection of "recipes" which
tell BitBake what to build,
organized in layers

meta (oe-core)meta (oe-core)

meta-yoctometa-yocto

meta-yocto-bspmeta-yocto-bsp

Other layersOther layers

OK, so what is Poky?
Poky is a reference distribution
Poky has its own git repo

git clone git://git.yoctoproject.org/poky

Primary Poky layers
oe-core (poky/meta)
meta-yocto
meta-yocto-bsp

Poky is the starting point for
building things with yocto

12

Poky in Detail
Contains core components

 Bitbake tool: A python-based build engine
 Build scripts (infrastructure)
 Foundation package recipes (oe-core)
 Meta-yocto (Contains distribution policy)

 Reference BSPs
 Yocto Project

documentation

Putting It All Together
Yocto Project is a large collaboration
OpenEmbedded is the build system
Bitbake is the built tool
Poky is the Yocto Project's reference

distribution

 Poky contains a version of bitbake and
oe-core from which you can start your
project

14

Build System Workflow

16

BITBAKE

This section will introduce the concept of the
bitbake build tool and how it can be used to build
recipes

17

Metadata and bitbake
➢Most common form of metadata: The Recipe
➢A Recipe provides a “list of ingredients” and
“cooking instructions”

➢Defines settings and a set of tasks used by
bitbake to build binary packages

busybox

glibc

sysvinit

coreutils

libgtk

Metadata

BitBake

➢Metadata exists in four general categories:

➢Recipes (*.bb)
 Usually describe build instructions for a single package

➢PackageGroups (special *.bb)
 Often used to group packages together for a FS image

➢Classes (*.bbclass)
 Inheritance mechanism for common functionality

➢Configuration (*.conf)
 Drives the overall behavior of the build process

What is Metadata?

➢Append files (*.bbappend)
 Define additional metadata for a similarly named .bb file

 Can add or override previously set values

➢Include files (*.inc)
 Files which are used with the include directive

 Include files are typical found via the BBPATH variable

Other Metadata

OE-CORE Breakdown

21

 *.bb: 868
Packagegroup*: 30

*.bbclass: 169
*.conf: 70
 *.inc: 283

 *.bb: 868
Packagegroup*: 30

*.bbclass: 169
*.conf: 70
 *.inc: 283

Introduction to Bitbake
➢ Bitbake is a task executor and scheduler
➢ By default the build task for the specified

recipe is executed

$ bitbake myrecipe

➢ You can indicate which task you want run

$ bitbake -c clean myrecipe

➢ You can get a list of tasks with

$ bitbake -c listtasks myrecipe

Building Recipes
➢ By default the highest version of a recipe is

built (can be overriden with DEFAULT_PREFERENCE or
PREFERRED_VERSION metadata)

$ bitbake myrecipe
➢ You can specify the version of the package

you want built (version of upstream source)

$ bitbake myrecipe-1.0
➢ You can also build a particular revision of the

package metadata

$ bitbake myrecipe-1.0-r0
➢ Or you can provide a recipe file to build

$ bitbake -b mydir/myrecip.bb

Running bitbake for the First Time

➢ When you do a really big build, running with
--continue (-k) means bitbake will proceed
as far as possible after finding an error

$ bitbake -k core-image-minimal

 When running a long build (e.g.
overnight) you want as much of the build
done as possible before debugging issues

➢ Running bitbake normally will stop on the
first error found

$ bitbake core-image-minimal
➢ We'll look at debugging recipe issue later...

Bitbake is a Task Scheduler
 Bitbake builds recipes by scheduling build

tasks in parallel

$ bitbake recipe
 This looks for recipe.bb in BBFILES

 Each recipe defines build tasks, each which
can depend on other tasks

 Recipes can also depend on other recipes,
meaning more than one recipe may be built

 Tasks from more than one recipe are often
executed in parallel at once on multi-cpu
build machines

25

Recipe Basics – Default Tasks*

Locate and download source code

Unpack source into working directory

Apply any patches

Perform any necessary pre-build configuration

Compile the source code

Installation of resulting build artifacts in
WORKDIR

Copy artifacts to sysroot

Create binary package(s)

do_fetchdo_fetch

do_unpackdo_unpack

do_patchdo_patch

do_configuredo_configure

do_installdo_install

do_compiledo_compile

*Simplified for illustration

Note: to see the list of all possible tasks for a recipe, do
this:
$ bitbake c listtasks <recipe_name>

do_populate_sysrootdo_populate_sysroot

do_package_*do_package_*

Simple recipe task list*

27
*Simplified for illustration

$ bitbake hello
NOTE: Running task 337 of 379 (ID: 4, hello_1.0.0.bb, do_fetch)
NOTE: Running task 368 of 379 (ID: 0, hello_1.0.0.bb, do_unpack)
NOTE: Running task 369 of 379 (ID: 1, hello_1.0.0.bb, do_patch)
NOTE: Running task 370 of 379 (ID: 5, hello_1.0.0.bb, do_configure)
NOTE: Running task 371 of 379 (ID: 7, hello_1.0.0.bb, do_populate_lic)
NOTE: Running task 372 of 379 (ID: 6, hello_1.0.0.bb, do_compile)
NOTE: Running task 373 of 379 (ID: 2, hello_1.0.0.bb, do_install)
NOTE: Running task 374 of 379 (ID: 11, hello_1.0.0.bb, do_package)
NOTE: Running task 375 of 379 (ID: 3, hello_1.0.0.bb, do_populate_sysroot)
NOTE: Running task 376 of 379 (ID: 8, hello_1.0.0.bb, do_packagedata)
NOTE: Running task 377 of 379 (ID: 12, hello_1.0.0.bb, do_package_write_ipk)
NOTE: Running task 378 of 379 (ID: 9, hello_1.0.0.bb, do_package_qa)

*Output has been formatted to fit this slide.

SSTATE CACHE
 Several bitbake tasks can use past versions

of build artefacts if there have been no
changes since the last time you built them

28

do_packagedata Creates package metadata used by the
build system to generate the final packages

do_package Analyzes the content of the holding area
and splits it into subsets based on available
packages and files

do_package_write_rpm Creates the actual RPM packages and
places them in the Package Feed area

do_populate_lic Writes license information for the recipe
that is collected later when the image is
constructed

do_populate_sysroot Copies a subset of files installed by
do_install into the sysroot in order to make
them available to other recipes

Simple recipe build from sstate cache*

29
*Simplified for illustration

$ bitbake c clean hello
$ bitbake hello
NOTE: Running setscene task 69 of 74 (hello_1.0.0.bb, do_populate_sysroot_setscene)
NOTE: Running setscene task 70 of 74 (hello_1.0.0.bb, do_populate_lic_setscene)
NOTE: Running setscene task 71 of 74 (hello_1.0.0.bb, do_package_qa_setscene)
NOTE: Running setscene task 72 of 74 (hello_1.0.0.bb, do_package_write_ipk_setscene)
NOTE: Running setscene task 73 of 74 (hello_1.0.0.bb, do_packagedata_setscene)

*Output has been formatted to fit this slide.

RECIPES

This section will introduce the concept of metadata
and recipes and how they can be used to automate
the building of packages

30

What is a Recipe?
A recipe is a set of instructions for

building packages, including:
 Where to obtain the upstream sources and

which patches to apply (this is called “fetching”)
oSRC_URI

 Dependencies (on libraries or other recipes)
oDEPENDS, RDEPENDS

 Configuration/compilation options
oEXTRA_OECONF, EXTRA_OEMAKE

 Define which files go into what output packages
oFILES_*

31

Example Recipe – ethtool_3.15.bb

32

What can a Recipe Do?
➢Build one or more packages from

source code

 Host tools, compiler, utilities

 Bootloader, Kernel, etc

 Libraries, interpretors, etc

 Userspace applications

➢Package Groups

➢Full System Images

37

Recipe Operators
A = “foo” (late assignment)
B ?= “0t” (default value)
C ??= “abc” (late default)
D := “xyz” (Immediate assignment)

A .= “bar” “foobar” (append)
B =. “WO” “W00t” (prepend)
C += “def” “abc def” (append)
D =+ “uvw” “uvw xyz” (prepend)

38

More Recipe Operators
A = “foo”
A_append = “bar” “foobar”
B = “0t”
B_prepend = “WO” “W00t”

OVERRIDES = “os:arch:machine”
A = “abc”
A_os = “ABC” (Override)
A_append_arch = “def” (Conditional append)
A_prepend_os = “XYZ” (Conditional prepend)

39

Bitbake Variables/Metadata
➢ These are set automatically by bitbake

 TOPDIR – The build directory

 LAYERDIR – Current layer directory

 FILE – Path and filename of file being processed

➢ Policy variables control the build
 BUILD_ARCH – Host machine architecture

 TARGET_ARCH – Target architecture

 And many others...

40

Build Time Metadata
➢ PN – Pakage name (“myrecipe”)

➢ PV – Package version (1.0)

➢ PR – Package Release (r0)

➢ P = “${PN}${PV}”

➢ PF = “${PN}${PV}${PR}”

➢ FILE_DIRNAME – Directory for FILE

➢ FILESPATH = "${FILE_DIRNAME}/${PF}:\
${FILE_DIRNAME}/${P}:\
${FILE_DIRNAME}/${PN}:\
${FILE_DIRNAME}/files:${FILE_DIRNAME}

41

Build Time Metadata
➢ TOPDIR – The build directory

➢ TMPDIR = “${TOPDIR}/tmp”

➢ WORKDIR = ${TMPDIR}/work/${PF}”

➢ S = “${WORKDIR}/${P}” (Source dir)

➢ B = “${S}” (Build dir)

➢ D = “${WORKDIR}/${image}”(Destination dir)

➢ DEPLOY_DIR = “${TMPDIR}/deploy”

➢ DEPLOY_DIR_IMAGE = “${DEPLOY_DIR}/images”

42

Dependency Metadata
➢ Build time package variables

 DEPENDS – Build time package dependencies

 PROVIDES = “${P} ${PF} ${PN}”

➢ Runtime package variables

 RDEPENDS – Runtime package dependencies

 RRECOMMENDS – Runtime recommended packages

 RSUGGESTS – Runtime suggested packages

 RPROVIDES – Runtime provides

 RCONFLICTS – Runtime package conflicts

 RREPLACES – Runtime package replaces

43

Common Metadata
➢ Variables you commonly set

 SUMMARY – Short description of package/recipe

 HOMEPAGE – Upstream web page

 LICENSE – Licenses of included source code

 LIC_FILES_CHKSUM – Checksums of license files
at time of packaging (checked for change by
build)

 SRC_URI – URI of source code, patches and extra
files to be used to build packages. Uses different
fetchers based on the URI.

 FILES – Files to be included in binary packages

44

Examining Recipes: bc
Look at 'bc' recipe:
Found in

poky/meta/recipes-extended/bc/bc_1.06.bb
Uses LIC_FILES_CHKSUM and SRC_URI

checksums
Note the DEPENDS build dependency

declaration indicating that this package
depends on flex to build

45

Examining Recipes: bc.bb
SUMMARY = "Arbitrary precision calculator language"
HOMEPAGE = "http://www.gnu.org/software/bc/bc.html"

LICENSE = "GPLv2+ & LGPLv2.1"
LIC_FILES_CHKSUM = "file://COPYING;md5=94d55d512a9ba36caa9b7df079bae19f \
 file://COPYING.LIB;md5=d8045f3b8f929c1cb29a1e3fd737b499 \
 file://bc/bcdefs.h;endline=31;md5=46dffdaf10a99728dd8ce358e45d46d8 \
 file://dc/dc.h;endline=25;md5=2f9c558cdd80e31b4d904e48c2374328 \
 file://lib/number.c;endline=31;md5=99434a0898abca7784acfd36b8191199"

SECTION = "base"
DEPENDS = "flex"
PR = "r3"

SRC_URI = "${GNU_MIRROR}/bc/bc-${PV}.tar.gz \
 file://fix-segment-fault.patch "

SRC_URI[md5sum] = "d44b5dddebd8a7a7309aea6c36fda117"
SRC_URI[sha256sum] = "4ef6d9f17c3c0d92d8798e35666175ecd3d8efac4009d6457b5c99cea72c0e33"

inherit autotools texinfo update-alternatives

ALTERNATIVE_${PN} = "dc"
ALTERNATIVE_PRIORITY = "100"

BBCLASSEXTEND = "native"

46

Building upon bbclass
➢ Use inheritance for common design

patterns
➢ Provide a class file (.bbclass) which is then

inherited by other recipes (.bb files)

inherit autotools
 Bitbake will include the autotools.bbclass file

 Found in a classes directory via the BBPATH

47

Examining Recipes: flac
➢ Look at 'flac' recipe
➢ Found in

poky/meta/recipesmultimedia/flac/flac_1.3.1.bb
 Inherits from both autotools and gettext

 Customizes autoconf configure options
(EXTRA_OECONF) based on "TUNE" features

 Breaks up output into multiple binary packages
● See PACKAGES var. This recipe produces additional

packages with those names, while the FILES_* vars specify
which files go into these additional packages

48

Examining Recipes: flac.bb
SUMMARY = "Free Lossless Audio Codec"
DESCRIPTION = "FLAC stands for Free Lossless Audio Codec, a lossless audio compression format."
HOMEPAGE = "https://xiph.org/flac/"
BUGTRACKER = "http://sourceforge.net/p/flac/bugs/"
SECTION = "libs"
LICENSE = "GFDL-1.2 & GPLv2+ & LGPLv2.1+ & BSD"
LIC_FILES_CHKSUM = "file://COPYING.FDL;md5=ad1419ecc56e060eccf8184a87c4285f \
 file://src/Makefile.am;beginline=1;endline=17;md5=0a853b81d9d43d8aad3b53b05cfcc37e \
 file://COPYING.GPL;md5=b234ee4d69f5fce4486a80fdaf4a4263 \
 file://src/flac/main.c;beginline=1;endline=18;md5=d03a766558d233f9cc3ac5dfafd49deb \
 file://COPYING.LGPL;md5=fbc093901857fcd118f065f900982c24 \
 file://src/plugin_common/all.h;beginline=1;endline=18;md5=7c8a3b9e1e66ed0aba765bc6f35da85d \
 file://COPYING.Xiph;md5=a2c4b71c0198682376d483eb5bcc9197 \
 file://include/FLAC/all.h;beginline=65;endline=70;md5=64474f2b22e9e77b28d8b8b25c983a48"
DEPENDS = "libogg"

SRC_URI = "http://downloads.xiph.org/releases/flac/${BP}.tar.xz"

SRC_URI[md5sum] = "b9922c9a0378c88d3e901b234f852698"
SRC_URI[sha256sum] = "4773c0099dba767d963fd92143263be338c48702172e8754b9bc5103efe1c56c"

(con't next page)

49

Examining Recipes: flac.bb (con't)
(con't from previous page)

inherit autotools gettext

EXTRA_OECONF = "--disable-oggtest \
 --with-ogg-libraries=${STAGING_LIBDIR} \
 --with-ogg-includes=${STAGING_INCDIR} \
 --disable-xmms-plugin \
 --without-libiconv-prefix \
 ac_cv_prog_NASM="" \
 "

EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "altivec", " --enable-altivec", \
 " --disable-altivec", d)}"
EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "core2", " --enable-sse", "", d)}"
EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "corei7", " --enable-sse", "", d)}"

PACKAGES += "libflac libflac++ liboggflac liboggflac++"
FILES_${PN} = "${bindir}/*"
FILES_libflac = "${libdir}/libFLAC.so.*"
FILES_libflac++ = "${libdir}/libFLAC++.so.*"
FILES_liboggflac = "${libdir}/libOggFLAC.so.*"
FILES_liboggflac++ = "${libdir}/libOggFLAC++.so.*"

50

Grouping Local Metadata
➢ Sometimes sharing metadata between

recipes is easier via an include file
include file.inc

 Will include .inc file if found via BBPATH

 Can also specify an absolute path

 If not found, will continue without an error

require file.inc

 Same as an include

 Fails with an error if not found

51

Examining Recipes: ofono
➢ Look at 'ofono' recipe(s):
➢ Found in

poky/meta/recipesconnectivity/ofono/ofono_1.16.bb

 Splits recipe into common .inc file to share
common metadata between multiple recipes

 Sets a conditional build configuration options
through the PACKAGECONFIG var based on a
DISTRO_FEATURE (in the .inc file)

 Sets up an init service via do_install_append()

 Has a _git version of the recipe (not shown)

52

Examining Recipes: ofono.bb
require ofono.inc

SRC_URI = "\
 ${KERNELORG_MIRROR}/linux/network/${BPN}/${BP}.tar.xz \
 file://ofono \
 file://Revert-test-Convert-to-Python-3.patch \
 file://0001-backtrace-Disable-for-non-glibc-C-libraries.patch \
"
SRC_URI[md5sum] = "c31b5b55a1d68354bff771d3edf02829"
SRC_URI[sha256sum] = \
 "403b98dadece8bc804c0bd16b96d3db5a3bb0f84af64b3d67924da2d1a754b07"

CFLAGS_append_libc-uclibc = " -D_GNU_SOURCE"

53

Examining Recipes: ofono.inc
HOMEPAGE = "http://www.ofono.org"
SUMMARY = "open source telephony"
DESCRIPTION = "oFono is a stack for mobile telephony devices on Linux. oFono supports
speaking to telephony devices through specific drivers, or with generic AT commands."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://COPYING;md5=eb723b61539feef013de476e68b5c50a \
 file://src/ofono.h;beginline=1;endline=20;md5=3ce17d5978ef3445def265b98899c2ee"

inherit autotools pkgconfig update-rc.d systemd bluetooth

DEPENDS = "dbus glib-2.0 udev mobile-broadband-provider-info"

INITSCRIPT_NAME = "ofono"
INITSCRIPT_PARAMS = "defaults 22"

PACKAGECONFIG ??= "\
 ${@bb.utils.contains('DISTRO_FEATURES', 'systemd', 'systemd', '', d)} \
 ${@bb.utils.contains('DISTRO_FEATURES', 'bluetooth', 'bluez', '', d)} \
 "
PACKAGECONFIG[systemd] = "--with-systemdunitdir=${systemd_unitdir}/system/, \
 --with-systemdunitdir="
PACKAGECONFIG[bluez] = "--enable-bluetooth, --disable-bluetooth, ${BLUEZ}"
(con't next page)

54

Examining Recipes: ofono.inc
(con't from previous page)

EXTRA_OECONF += "--enable-test"

SYSTEMD_SERVICE_${PN} = "ofono.service"

do_install_append() {
 install -d ${D}${sysconfdir}/init.d/
 install -m 0755 ${WORKDIR}/ofono ${D}${sysconfdir}/init.d/ofono
}

PACKAGES =+ "${PN}-tests"

RDEPENDS_${PN} += "dbus"

FILES_${PN} += "${base_libdir}/udev ${systemd_unitdir}"
FILES_${PN}-tests = "${libdir}/${BPN}/test"
RDEPENDS_${PN}-tests = "python python-pygobject python-dbus"

55

WHEN THINGS GO WRONG

Some useful tools to help guide you when
something goes wrong

56

Bitbake Environment
 Each recipe has its own environment

which contains all the variables and
methods required to build that recipe

 You've seen some of the variables
already

 DESCRIPTION, SRC_URI, LICENSE, S,
LIC_FILES_CHKSUM, do_compile(), do_install()

 Example
 S = "${WORKDIR}"
 What does this mean?

Examine a Recipe's Environment

To view a recipe's envrionment
$ bitbake -e myrecipe

Where is the source code for this
recipe"
$ bitbake -e virtual/kernel | grep “^S=”
S="${HOME}/yocto/build/tmp/work-shared/qemuarm/kernel-source"

What file was used in building
this recipe?
$ bitbake -e netbase | grep “^FILE=”
FILE="${HOME}/yocto/poky/meta/recipes-core/netbase/netbase_5.3.bb"

58

Examine a Recipe's Environment (cont'd)

 What is this recipe's full version string?
$ bitbake -e netbase | grep “^PF=”
PF="netbase-1_5.3-r0"

 Where is this recipe's BUILD directory?
$ bitbake -e virtual/kernel | grep “^B=”
B="${HOME}/yocto/build/tmp/work/qemuarm-poky-linux-\
gnueabi/linux-yocto/3.19.2+gitAUTOINC+9e70b482d3\
_473e2f3788-r0/linux-qemuarm-standard-build"

What packages were produced by this
recipe?
$ bitbake -e virtual/kernel | grep “^PACKAGES=”
PACKAGES="kernel kernel-base kernel-vmlinux kernel-image \
kernel-dev kernel-modules kernel-devicetree"

59

BitBake Log Files
Every build produces lots of log output for

diagnostics and error chasing
Verbose log of bitbake console output:

oLook in …/tmp/log/cooker/<machine>
$ cat tmp/log/cooker/qemuarm/20160119073325.log | grep 'NOTE:.*task.*Started'
NOTE: recipe hello-1.0.0-r0: task do_fetch: Started
NOTE: recipe hello-1.0.0-r0: task do_unpack: Started
NOTE: recipe hello-1.0.0-r0: task do_patch: Started
NOTE: recipe hello-1.0.0-r0: task do_configure: Started
NOTE: recipe hello-1.0.0-r0: task do_populate_lic: Started
NOTE: recipe hello-1.0.0-r0: task do_compile: Started
NOTE: recipe hello-1.0.0-r0: task do_install: Started
NOTE: recipe hello-1.0.0-r0: task do_populate_sysroot: Started
NOTE: recipe hello-1.0.0-r0: task do_package: Started
NOTE: recipe hello-1.0.0-r0: task do_packagedata: Started
NOTE: recipe hello-1.0.0-r0: task do_package_write_rpm: Started
NOTE: recipe hello-1.0.0-r0: task do_package_qa: Started
NOTE: recipe ypdd-image-1.0-r0: task do_rootfs: Started

60

BitBake Per-Recipe Log Files
Every recipe produces lots of log

output for diagnostics and debugging
Use the Environment to find the log

files for a given recipe:
$ bitbake -e hello | grep “^T=”
T="${HOME}yocto/build/tmp/work/armv5e-poky-linux-
gnueabi/hello/1.0.0-r0/temp"

Each task that runs for a recipe
produces "log" and "run" files in
${WORKDIR}/temp

61

BitBake Per-Recipe Log Files
$ cd ${T} (See definition of T in previous slide)

$ find . -type l -name 'log.*'
./log.do_package_qa
./log.do_package_write_rpm
./log.do_package
./log.do_fetch
./log.do_populate_lic
./log.do_install
./log.do_configure
./log.do_unpack
./log.do_populate_sysroot
./log.do_compile
./log.do_packagedata
./log.do_patch

Yocto Project Developer Day –
Oct 2015 62

These files contain
the output of the
respective tasks
for each recipe

These files contain
the output of the
respective tasks
for each recipe

BitBake Per-Recipe Log Files
$ cd ${T} (See definition of T in previous slide)

$ find . -type l -name 'run.*'
./run.do_fetch
./run.do_patch
./run.do_configure
./run.do_populate_sysroot
./run.do_package_qa
./run.do_unpack
./run.do_compile
./run.do_install
./run.do_packagedata
./run.do_populate_lic
./run.do_package
./run.do_package_write_rpm

Yocto Project Developer Day –
Oct 2015 63

These files contain the
commands executed
which produce the

build results

These files contain the
commands executed
which produce the

build results

BUILDING A FULL
EMBEDDED IMAGE WITH
YOCTO

This section will introduce the concept of building
an initial system image

64

Quick Start Guide in one Slide
1.Download Yocto Project sources:

 $ wget http://downloads.yoctoproject.org/releases/yocto/yocto-2.0/poky-jethro-14.0.0.tar.bz2

 $ tar xf poky-jethro-14.0.0.tar.bz2

 $ cd poky-jethro-14.0.0

 Can also use git and checkout a known branch e.g. Jethro
● $ git clone -b jethro git://git.yoctoproject.org/poky.git

● $ cd poky

2.Build one of the reference Linux distributions:
 poky$ source oe-init-build-env

 Check/Edit local.conf for sanity
● e.g. Modify MACHINE=qemuarm

 poky/build$ bitbake -k core-image-{minimal|base|sato}

3.Run the image under emulation:
 $ runqemu qemux86

4.Profit!!! (well… actually there is more work to do...)

65

Host System Layout
$HOME/yocto/
 |build (or whatever name you choose)
 Project build directory

 |downloads (DL_DIR)
 Downloaded source cache

 |poky (Do Not Modify anything in here*)
 Poky, bitbake, scripts, oecore, metadata

 |sstatecache (SSTATE_DIR)
 Binary build cache

66

* We will cover how to use layers to make changes later

oe-core (meta)oe-core (meta)

meta-yoctometa-yocto

meta-yocto-bspmeta-yocto-bsp

Poky Layout
$HOME/yocto/poky/

|---LICENSE

|---README

|---README.hardware

|---bitbake/ (The build tool)

|---documentation/

|---meta/ (oe-core)

|---meta-yocto/ (Yocto distro metadata)

|---meta-yocto-bsp/ (Yocto Reference BSPs)

|---oe-init-build-env (Project setup script)

|---scripts/ (Scripts and utilities)

67

Note: A few files have been items omitted to facility the presentation on this slide

Setting up a Build Directory

➢ Start by setting up a build directory

 Local configuration

 Temporary build artifacts
$ cd $HOME/yocto/

$ source ./poky/oeinitbuildenv build

➢ Replace build with whatever build
directory name you want to use

➢ You need to re-run this script in any
new terminal you start

68

Build directory Layout
$HOME/yocto/build/

|---bitbake.lock

|---cache/ (bitbake cache files)

|---conf/

| |--bblayers.conf (bitbake layers)

| |--local.conf (local configuration)

| `--site.conf (optional site conf)

`---tmp/ (Build artifacts)

69

Note: A few files have been items omitted to facility the presentation on this slide

Building a Linux Image

General Procedure:
 Create a project directory using

oe-init-build-env
 Configure build by editing local.conf
$HOME/yocto/build/conf/local.conf
o Select appropriate MACHINE type
o Set shared downloads directory (DL_DIR)
o Set shared state directory (SSTATE_DIR)

 Build your selected Image
$ bitbake -k core-image-minimal

 (Detailed steps follow…)

70

Update Build Configuration
 Configure build by editing local.conf
$HOME/yocto/build/conf/local.conf
 Set appropriate MACHINE, DL_DIR and SSTATE_DIR

 Add the following to the bottom of local.conf

MACHINE = "qemuarm"
DL_DIR = "${TOPDIR}/../downloads"
SSTATE_DIR = "${TOPDIR}/../sstatecache/${MACHINE}"

 Notice how you can use variables in setting
these values

71

Building an Embedded Image
➢This builds an entire embedded Linux

distribution
➢Choose from one of the available Images
➢The following builds a minimal embedded

target
$ bitbake k coreimageminimal

➢On a fast computer the first build may take
the better part of an hour

➢The next time you build it (with no
changes) it may take as little as 5 mins
(due to the shared state cache)

72

Booting Your Image with QEMU
The runqemu script is used to boot the

image with QEMU
It auto-detects settings as much as possible,

enabling the following command to boot our
reference images:

$ runqemu qemuarm [nographic]
Use nographic if using a non-graphical session (ssh),

do not type the square brackets

Replace qemuarm with your value of MACHINE
Your QEMU instance should boot
Kill it using another terminal:

$ killall qemusystemarm

73

LAYERS

This section will introduce the concept of layers and
how important they are in the overall build
architecture

74

Layers
Metadata is provided in a series of layers

which allow you to override any value
without editing the originally provided files

A layer is a logical collection of metadata in
the form of recipes

A layer is used to represent oe-core, a
Board Support Package (BSP), an
application stack, and your new code

All layers have a priority and can override
policy, metadata and config settings of
layers with a lesser priority

75

Layer Hierarchy

76

meta (oe-core)meta (oe-core)

meta-yoctometa-yocto

BSP layerBSP layer

UI/GUI layerUI/GUI layer

Commercial layers (OSV or
middleware)

Commercial layers (OSV or
middleware)

Developer layer(s)Developer layer(s)

Using Layers
Layers are added to your build by

inserting them into the BBLAYERS
variable within your bblayers file
$HOME/yocto/build/conf/bblayers.conf

BBLAYERS ?= " \
 ${HOME}/yocto/poky/meta \
 ${HOME}/yocto/poky/metayocto \
 ${HOME}/yocto/poky/metayoctobsp \
 “

77

Board Support Packages
BSPs are layers to enable support for

specific hardware platforms
Defines machine configuration

variables for the board (MACHINE)
Adds machine-specific recipes and

customizations
 Boot loader
 Kernel config
 Graphics drivers (e.g, Xorg)
 Additional recipes to support hardware

features

78

Notes on using Layers

When doing development with
Yocto, do not edit files within the
Poky source tree

Use a new custom layer for
modularity and maintainability

Layers also allow you to easily
port from one version of
Yocto/Poky to the next version

79

Creating a Custom Layer
➢ Layers can be created manually
➢ They all start with “meta-” by convention
➢ However using the yocto-layer tool is

easier

$ yocto-layer create ypdd

 This will create meta-ypdd in the current dir
➢ For Board Support Package Layers there

is the yocto-bsp tool

$ yocto-bsp create mybsp arm

 This will create meta-mybsp in the current dir

80

Create a Custom Layer
$ cd yocto
yocto$ source poky/oe-init-build-env build
yocto/build$ yocto-layer create ypdd
Please enter the layer priority you'd like to use for the layer: [default: 6] 6
Would you like to have an example recipe created? (y/n) [default: n] y
Please enter the name you'd like to use for your example recipe: [default:
example] example
Would you like to have an example bbappend file created? (y/n) [default: n] n

New layer created in meta-ypdd.

Don't forget to add it to your BBLAYERS (for details see meta-ypdd\README).
yocto/build$

81

The new Custom Layer

yocto/build$ tree meta-ypdd
meta-ypdd/
|--COPYING.MIT (The license file)
|--README (Starting point for README)
|--conf
| `--layer.conf (Layer configuration file)
`--recipes-example (A grouping of recipies)
 `--example (The example package)
 |--example-0.1 (files for v0.1 of example)
 | |--example.patch
 | `--helloworld.c
 `--example_0.1.bb (The example recipe)

82

Layer.conf
We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

We have recipes-* directories, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
 ${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "ypdd"
BBFILE_PATTERN_ypdd = "^${LAYERDIR}/"
BBFILE_PRIORITY_ypdd = "6"

83

Adding Layers to Your Build
Add your layer to bblayers.conf
$HOME/yocto/build/conf/bblayers.conf

BBLAYERS ?= " \

 ${HOME}/yocto/poky/meta \

 ${HOME}/yocto/poky/metayocto \

 ${HOME}/yocto/poky/metayoctobsp \

 ${HOME}/yocto/build/metaypdd \

 “

84

Build Your New Recipe
You can now build the new recipe

$ bitbake example

This will now build the example_0.1.bb
recipe which is found in

meta-ypdd/recipes-example/example/example_0.1.bb

85

IMAGES

This section will introduce the concept of images;
recipes which build embedded system images

86

What is an Image?
➢ Building an image creates an entire

Linux distribution from source

 Compiler, tools, libraries

 BSP: Bootloader, Kernel

 Root filesystem:
● Base OS
● services
● Applications
● etc

87

Extending an Image

You often need to create your own
Image recipe in order to add new
packages or functionality

With Yocto/OpenEmbedded it is
always preferable to extend an
existing recipe or inherit a class

The simplest way is to inherit the
core-image bbclass

You add packages to the image by
adding them to IMAGE_INSTALL

88

A Simple Image Recipe
 Create an images directory
$ mkdir -p ${HOME}/yocto/build/meta-ypdd/recipes-core/images

 Create the image recipe
$ vi ${HOME}/yocto/build/meta-ypdd/recipes-core/images/ypdd-image.bb

 DESCRIPTION = "A core image for YPDD"
 LICENSE = "MIT"

 # Core files for basic console boot
 IMAGE_INSTALL = "packagegroup-core-boot"

 # Add our desired packages
 IMAGE_INSTALL += "psplash dropbear"

 inherit core-image

 IMAGE_ROOTFS_SIZE ?= "8192"

89

Exercise 7: Build and Boot Your Custom Image

Enable the metaypdd layer in
your build

Edit conf/bblayers.conf and add
the path to meta-ypdd to the
BBLAYERS variable declaration

 (example in the next slide)

90

Add Your Layer
Make sure your layer is added to
BBLAYERS in bblayers.conf
$HOME/yocto/build/conf/bblayers.conf

BBLAYERS ?= " \

 ${HOME}/yocto/poky/meta \

 ${HOME}/yocto/poky/metayocto \

 ${HOME}/yocto/poky/metayoctobsp \

 ${HOME}/yocto/build/metaypdd \

 “
➢ (We already did this step in a previous section)

91

Exercise 7: Build and Boot Your Custom Image

Build your custom image:
$ bitbake ypddimage
(If your SSTATE_DIR is configured correctly
from a previous build this should take less
than 5 minutes)

Boot the image with QEMU:
 $ runqemu qemuarm tmp/deploy/images/qemuarm/ypdd

imageqemuarm.ext4 [nographic]

92

Use nographic
if using ssh

environment

Use nographic
if using ssh

environment

Exercise 7: Build/Boot Custom Image

Verify that dropbear ssh server
is present

$ which dropbear

If you used the graphical
invocation of QEMU using VNC
viewer, you will see the splash
screen on boot.

93

BUILD AN APPLICATION

Adding a "hello world"
application to our custom image

94

Building an Application
General procedure:

 Write hello world application (hello.c)
 Create recipe for hello world application
 Modify image recipe to add hello world

application to your image

 What follows is the example of a simple
one C file application

 (Building a more complicated recipe from a
tarball would specify how to find the
upstream source with the SRC_URI)

95

Add Application Code
For a simple one C file package,

you can add the hello application
source to a directory called files in
the hello package directory

$ mkdir -p ${HOME}/yocto/build/meta-ypdd/\
recipes-core/hello/files

$ vi /scratch/sandbox/meta-ypdd/recipes-core/\
hello/files/hello.c

96

Application Code

97

#include <stdio.h>

int main(int argc, char **argv) {
 printf("Hello World\n");
 return 0;
}

$ vi /scratch/sandbox/meta-ypdd/recipes-core/hello/files/hello.c

Add Application Recipe
Write hello world recipe
Create directory to hold the recipe

and associated files
$ mkdir p ${HOME}/yocto/build/metaypdd/\

recipescore/hello
(We actually did this already in the previous step)

Create hello_1.0.bb (next slide)
$ vi ${HOME}/yocto/build/metaypdd/\

recipescore/hello/hello_1.0.bb

98

Application Recipe

99

DESCRIPTION = "Hello World example"
LICENSE = "MIT"

LIC_FILES_CHKSUM = "file://$
{COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384
361b4de20420"

S = "${WORKDIR}"

SRC_URI = "file://hello.c"

do_compile() {
 ${CC} hello.c o hello
}

do_install() {
 install d m 0755 ${D}/${bindir}
 install m 0755 hello ${D}/${bindir}/hello
}

$ vi ${HOME}/yocto/build/metaypdd/recipescore/hello/hello_1.0.bb

Add Application to the Image
Modify image recipe to add hello

world application to your image
See example on next slide

100

Add hello to Image

101

DESCRIPTION = "A core image for YPDD"
LICENSE = "MIT"

Core files for basic console boot
IMAGE_INSTALL = "packagegroupcoreboot"

Add our desired extra files
IMAGE_INSTALL += "psplash dropbear hello"

inherit coreimage

IMAGE_ROOTFS_SIZE ?= "8192"

$ vi ${HOME}/yocto/build/meta-ypdd/recipes-core/images/ypdd-image.bb

Add the package 'hello'
to your image recipe

Add the package 'hello'
to your image recipe

Build and Test Application
Now (re)build your image recipe
$ bitbake ypddimage

hello_1.0.bb will be processed because it is in
your custom layer, and referenced in your image
recipe.

Boot your image using runqemu, as
before:

$ runqemu qemuarm tmp/deploy/images/
qemuarm/ypddimageqemuarm.ext4 nographic
You should be able to type "hello" at the

command line and see "Hello World"

102

117

It’s not an embedded
Linux distribution

It creates a
custom one for you

TIPS HINTS AND OTHER
RESOURCES

The following slides contain reference material that
will help you climb the Yocto Project learning curve

118

Common Gotchas When Getting Started

Working behind a network proxy? Please
follow this guide:

https://wiki.yoctoproject.org/wiki/Workin
g_Behind_a_Network_Proxy

Do not try to re-use the same shell
environment when moving between copies of
the build system

oeinitbuildenv script appends to your
$PATH, it's results are cumulative and can
cause unpredictable build errors

Do not try to share sstate-cache between
hosts running different Linux distros even if
they say it works

119

Project Resources
The Yocto Project is an open source project,

and aims to deliver an open standard for the
embedded Linux community and industry

Development is done in the open through
public mailing lists: openembedded-
core@lists.openembedded.org,
poky@yoctoproject.org, and
yocto@yoctoproject.org

And public code repositories:
http://git.yoctoproject.org and
http://git.openembedded.org
Bug reports and feature requests
http://bugzilla.yoctoproject.org

120

Tip: ack-grep
Much faster than grep for the

relevant use cases
Designed for code search
Searches only relevant files

Knows about many types: C, asm, perl
By default, skips .git, .svn, etc.
Can be taught arbitrary types

Perfect for searching metadata

121

TIP: VIM Syntax Highlighting
https://github.com/openembedded/bitbake/tree/master/contrib/vim

Install files from the above repo in ~/.vim/
Add "syntax on" in ~/.vimrc

$ tree ~/.vim/
/Users/chris/.vim/
├── ftdetect
│ └── bitbake.vim
├── ftplugin
│ └── bitbake.vim
├── plugin
│ └── newbb.vim
└── syntax
 └── bitbake.vim

123

TIP: VIM Syntax Highlighting

124

	Slide 1
	Yocto Project Overview
	Slide 5
	Yocto Project Overview
	Yocto Project Overview
	Yocto Project Release Versions
	Yocto is based on openembedded-core
	Slide 10
	Slide 11
	OK, so what is Poky?
	Poky in Detail
	Putting It All Together
	Slide 16
	Slide 17
	Recipe Basics
	What is Metadata?
	Slide 20
	OE-CORE Breakdown
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Simple recipe task list*
	SSTATE CACHE
	Simple recipe build from sstate cache*
	Slide 30
	Recipe Basics
	Example Recipe – ethtool_3.15.bb
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Exercise 2: Examining Recipes
	Slide 46
	Exercise 2: Examining Recipes
	Slide 48
	Slide 49
	Slide 50
	Exercise 2: Examining Recipes
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	From beginner to intermediate user
	Bitbake Environment
	Examine the BitBake Environment
	Slide 59
	BitBake Log Files
	BitBake Per-Recipe Log Files
	Slide 62
	Slide 63
	Slide 64
	Quick Start Guide in a Slide
	Host System Layout
	Poky Layout
	Slide 68
	Slide 69
	Exercise 3: Building a Linux Image
	Slide 71
	Exercise 3: Building a Linux Image
	Exercise 4: Booting Your Image with QEMU
	layers and more
	Layers
	Layer Hierarchy
	Using Layers
	Board Support Packages
	Notes on using Layers
	Exercise 5: Create a Custom Layer
	Exercise 5: Create a Custom Layer
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Exercise 6:
	Exercise 6: Creating a Custom Image Recipe
	Slide 89
	Exercise 7: Build and Boot Your Custom Image
	Slide 91
	Exercise 7: Build and Boot Your Custom Image
	Exercise 7: Build/Boot Custom Image
	Exercise 8: develop and integrate custom application
	Exercise 8: Add Application
	Exercise 8: Add App
	Exercise 8: Add app
	Exercise 8: Add Application
	Exercise 8: Add App
	Exercise 8: Add Application
	Exercise 8: Add app
	Exercise 8: Add app
	Slide 117
	Tips hints and other resources
	Common Gotchas When Getting Started
	Project Resources
	Tip: ack-grep
	TIP: VIM Syntax Highlighting
	TIP: VIM Syntax Highlighting

