
Advanced Lab: IoT
Development

David Reyna, Mark Hatle
Wind River Systems

Yocto Project Developer Day � San Jose �
6 March 2015

2

Agenda
• The Mission
• Activity 1: Preparing the Projects
• Activity 2: Presentation on Advanced Topics
• Activity 3: Preparing the Kernel Module Simulator
• Activity 4: Preparing the Application
• Activity 5: Prototyping the IoT Edge Device
• Activity 6: Extra Credit
• Q & A
• Appendix

• Project Setup at Home

• Parts List and ordering information

• Resource links

3

Greetings, IoT Developer Hero!

Your company is about to release a new IoT product, but
the engineer before you has been called away.

Your task is to finish this device. You will need to debug
it, remotely update it, connect it to your home server,

and demonstrate it to your boss, all in one 3 hour class!

But not to worry, we will show you the techniques you
will need to be an IoT hero here and in the future!

4

The Product

• A morse code edge device as part of an IoT
product to support the severely
handicapped

• This device must be able to connect with a
local target, communicate with peers, and
communicate with a remote server

5

The Challenge

• No edge device!
• You have no edge device yet, so you need to simulate the

hardware with a custom device driver

• No board!
• You have no board yet, so you need to develop and validate

the application using QEMU

• The Kernel Module has bugs!
• You will need your skills to debug the kernel module

• The Application has bugs!
• You will need your skills to debug the application

6

Topics Covered
• Building on the Yocto Project Beginning Class

• Layers, images, targets, modularity, debugging support
• Advanced Topics

• PRserver, sysfs and GPIO, non-blocking I/O
• Kernel Space

• Custom device drivers, parameter passing, sysfs, kernel timers,
debugging techniques

• Application Space
• Custom applications, sysfs access, non-blocking character I/O,

application timers, socket servers and clients, debugging
techniques

• Board Bring-up
• Connecting an edge device to the board

7

Topics Not Covered (for sake of brevity)

• Security
• Encryption on the line
• Permission control at Sever
• Permission control at Target

• Network Configuration
• Firewalls
• Proxies
• Discovery

• GUI Tools
• Eclipse

Activity One

Preparing the Projects

9

Yocto Project Dev Day Lab Setup

• You will be given information on how to log into your personal
virtual host.

• The virtual host’s resources can be found here:
• Yocto Project: "/scratch/yocto/sources/poky"
• Downloads: "/scratch/yocto/downloads"
• Sstate-cache: "/scratch/yocto/sstate-cache"
• Sources: "/scratch/yocto/sources"

• You will be using SSH to communicate with your virtual server,
to reduce the overhead that graphical systems like VNC would
require

10

Class setup
• Your host use the network to communicate with your

virtual host over three SSH connections

• You will communicate with your QEMU target using
two serial connections

Your Host

SSH
(QEMU)

Telnet
(CONSOLE)

GDB
(DEBUG)

QEMU Target

Serial Console
ttyS1 ttyS2

Application

Hardware simulator

Your Virtual Host
(BUILD)

11

Morseapp System Block Diagram

Breadboard
GPIO

Header

Morse
Talk

User Console / SSH

N
et

w
or

k

Timer
1/20 hz

ButtonLED

sysfs

Text
Talk

Morsemod
simulator

Morse to
ASCII codec

Client
module

Server
module

GPIO manager

Client
Talk

Server

Remote
Server

Non-blocking I/O child process

Kernel

12

Build your QEMU project

• Prepare your QEMU project (for part 1)
$ cd /scratch/working
$. /scratch/yocto/sources/poky/oe-init-build-env build-qemux86
$ vi conf/bblayers.conf

add to conf/bblayers.conf to BBLAYERS:
/scratch/yocto/sources/ypdd-adv-layer \

$ vi conf/local.conf
add to local.conf:
SSTATE_DIR = "/scratch/yocto/sstate-cache"
DL_DIR = "/scratch/yocto/downloads"
IMAGE_INSTALL_append = " gdbserver morseapp morsemod openssh"
EXTRA_IMAGEDEPENDS_append = " gdb-cross-i586 "
INHIBIT_PACKAGE_STRIP_pn-linux-yocto = "1"
INHIBIT_PACKAGE_STRIP_pn-morsemod = "1"

$ bitbake core-image-base

Activity Two

Advanced Topics

14

Advanced Topic: PR Service
• PR = Package Revision

• A package feed manager which is compatible with
existing package manager applications like
RPM/smart, Debian/apt and opkg.

• Attempting to maintain these values in the metadata is
error prone, inaccurate and causes problems for
people submitting recipes

• Example:
• bash-3.2-r0.armv5l.rpm
• bash-3.2-r1.armv5l.rpm

15

Advanced Topic: PR Service
• Insures that that versions increase in a linear fashion

and there are a number of version components that
facilitate this, namely in order of decreasing priority
PE, PV and PR (epoch, version and revision).

• Enable with this option:

• More information can he found here:
• https://wiki.yoctoproject.org/wiki/PR_Service

add to conf/local.conf:
PRSERV_HOST = "localhost:0"

16

Advanced Topic: GPIO and sysfs
• The "sysfs" virtual file system is a service that provides access

from user space to managed kernel resources.

• The GPIO port access is such a service that the Linux kernel
provides, and all of the boards in the class support this.

• The GPIO sysfs interface allows simple echo statements to
expose ports and set their direction and value.

• To instantiate a GPIO pin in the file system, you simply:
$ cd to "/sys/class/GPIO"
$ echo $PORT > export
$ cd gpio${PORT}
$ echo "in" > direction (or) echo "out" > direction
$ cat value (or) echo $VALUE > value

• For the QEMU simulator, we are going to use a custom kernel
module to instantiate GPIO ports to simulate the hardware

17

Advanced Topic: Non-Blocking I/O
• For our application, we need to weave together asynchronous

and time critical data from the GPIO hardware, the client-server
socket, and the user’s keyboard commands

• The C standard I/O libraries are built around line control, which is
blocking in nature. We get around this by:
• Changing STDIN to not wait for EOL
• Changing STDOUT to not wait for EOL
• Fork the application into a child that blocks on getchar(), and passes

received characters over a pipe to the main thread
• A side effect is that unexpected exits can leave the console in this non-

standard state, needing a manual "reset" command

• The socket interface is normally blocking, but this is easy to
reconfigure

• The GPIO sysfs interface is by nature non-blocking, at least for
the process that opens and thus reserves the channel
•

18

Advanced Topic: Updating without Rebooting
• While performing a full rebuild and re-burning boot media is the

cleanest and safest model for updates, it is not a timely method when
you need a quick and focused debug and deploy cycle.

• The easiest method to get updated content into the target is to use scp
from SSH. Most of the images come with SSH already included, and for
images like "core-image-base" you only need to append "openssh".

• In this class, as a shameless shortcut you will see that we used the
morseapp’s recipe to create a script that is inserted into the target file
system that can be called to perform the pull scp for you. This recipe
leverages the bitbake environment information to locate the desired
generated content from their sometimes arcane positions in the tree.

• You can also push the recipe’s generated packages (e.g. binary rpm
files) to the target for more complex content installing.

• In this class we will try only reboot the QEMU a few times (for the kernel
module’s sake).

19

Advanced Topic: Morse Code
• Timing

• The "dit" (·) is one time unit long (1/2 second in this implementation)
• The "dah" (–) is three time units long
• The space between dits and dahs is one time unit long
• The space between letters is three time units long
• The space between words is seven time units long
• In this class’s implementation, anything shorter that 3/4 second will be a

dit, and anything longer will be a dah

• Facts about Morse Code
• Professionals can process more that 40 words per minute
• Several morse code readers have been developed for the handicapped,

for example using breath control into air tubes
• Morse code together with the telegraph network was the internet of its day,

and ran empires

20

Activity Three

Debugging the Kernel Module

22

Morsemod features
• Morsemod Sysfs files

• "key" : the virtual key input port
• "led" : the virtual LED output port
• "simkey" : the backdoor port

• Simkey
• echo ‘<‘ > simkey (turn on the broadcast mode)
• echo ‘>’ > simkey (turn off the broadcast mode)
• echo ‘[‘ > simkey (turn on the loopback mode)
• echo ‘]’ > simkey (turn off the loopback mode)
• cat simkey returns the inner state: "K=0 L=1 B=1 LP=0"

• The "loopback" will echo the Key value to the LED value

• The "broadcast" mode will repeat a pre-recorded morse message

23

Debugging the Kernel Module
• We are now going to use KGDB to test and debug the kernel

module

• We will show that when encountering an error, it is important to
always check dmesg first before going to a debugger

• We will be using KGDBoS to debug the kernel over the serial port

• We will in fact need to set up QEMU with two serial ports, (a) one
for the user console and (b) one for the secondary port for the
KGDB access

• You should have three (3) windows open: build, target console
and remote GDB.

• QEMU has a very powerful backend JTAG-like debugging facility;
we will skip that in this demonstration to show techniques that
would carry over to a physical target

24

Interlude – Magic Numbers
• When you assign serial ports in QEMU, they are automatically

mapped to ttyS0, ttyS1, and so forth

• That is why when we start the KGDBoC service we will specify
ttyS1, because your telnet session already took ttyS0

• Note that different arches sometimes have different port names,
For example, qemuarm uses ttyAMA0. You may need to consult
the device tree to see what was instantiated.

$ runqemu qemux86 nographic \
qemuparams="-serial telnet:localhost:2345,server \
-serial tcp:localhost:2346,server,nowait"

$ telnet localhost 2345
echo ttyS1 > /sys/module/kgdboc/parameters/kgdboc

25

Debugging with KGDB – error inserting module
• Build Window: Start the QEMU session with two serial ports

• Console Window: Start a user console, insert the module, and it
fails!

• What happened? First look at dmesg or scrollback!

$ runqemu qemux86 nographic \
qemuparams="-serial telnet:localhost:2345,server \
-serial tcp:localhost:2346,server,nowait"

$ telnet localhost 2345
qemux86 login: root
root@qemux86:~# modprobe morsemod
<Error!>

dmesg tail
...
52 sysfs_warn_dup+0x7a/0x90()
sysfs: cannot create duplicate filename '/kernel/morse-mod/key'
Modules linked in: morse_mod(O+) uvesafb…

(Note: to stop QEMU, ctrl-c in the Build Window)

26

Debugging the kernel module – fix #1
• Bug -- we tried to create the 'key' file twice.. whoops!

(trying to use the debugger on this will end up taking twice as long or worse..)

• Let’s debug this:

• Look for __ATTR (the structure that holds the sysfs file info)

• Whoops, we defined 'key' twice, top one should be 'simkey'!

$ cd .../ypdd-adv-layer/recipes-ypdd-adv/morsemod/morsemod-2014.10.0
$ vi morsemod.c

static struct kobj_attribute simkey_attribute =
__ATTR(key, 0666, simkey_show, simkey_store);

...
static struct kobj_attribute led_attribute =

__ATTR(led, 0666, b_show, b_store);
static struct kobj_attribute key_attribute =

__ATTR(key, 0666, b_show, b_store);

- __ATTR(key, 0666, simkey_show, simkey_store);
+ __ATTR(simkey, 0666, simkey_show, simkey_store);

27

Debug the kernel module – try again
• Build Window: Boot, try it again (see above)

• Console Window: load module and see if it works…

$ bitbake core-image-base
$ runqemu qemux86 nographic qemuparams="-serial \
telnet:localhost:2345,server \
-serial tcp:localhost:2346,server,nowait"

$ telnet localhost 2345
qemux86 login: root
root@qemux86:~# modprobe morsemod
root@qemux86:~# cd /sys/kernel/morsemod
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=0 LP=0

28

Debug the kernel module – test loopback
• Let’s see if it can remember the key and led values

• Let’s see if we can enable loopback...

root@qemux86:/sys/kernel/morsemod# echo '1' > key
root@qemux86:/sys/kernel/morsemod# cat simkey
K=1 L=0 B=0 LP=0
root@qemux86:/sys/kernel/morsemod# echo '0' > key
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=0 LP=0
root@qemux86:/sys/kernel/morsemod# echo '1' > led
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=1 B=0 LP=0
root@qemux86:/sys/kernel/morsemod# echo '0' > led
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=0 LP=0

root@qemux86:/sys/kernel/morsemod# echo '[' > simkey
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=0 LP=1
root@qemux86:/sys/kernel/morsemod# echo '1' > key
root@qemux86:/sys/kernel/morsemod# cat simkey
K=1 L=1 B=0 LP=1
root@qemux86:/sys/kernel/morsemod# echo '0' > key
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=0 LP=1
root@qemux86:/sys/kernel/morsemod# echo ']' > simkey
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=0 LP=0

29

Debug the kernel module – Bug #2 : broadcast
• Let’s try enabling the demo broadcast message...

• It doesn't seem to be working. Time to try to debug the module!

root@qemux86:/sys/kernel/morsemod# echo '<' > simkey
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=1 LP=0
root@qemux86:/sys/kernel/morsemod# while true ; do cat key ; sleep 1 ; done
0
0
0
0
^C

30

Debug the kernel module – Bug #2 : broadcast
• Production image usually lack debug capabilities (stripped

symbols, no included debug sources, etc.) In the Yocto Project,
debug information is separate from the runtime in most cases. It
is packaged into ‘-dbg’ labeled packages.

• By creating a companion debug capable filesystem, you can use
remote (cross) debugging to debug a production filesystem.

• Debug Window: Construct a debug-fs
• Extract ‘dbg’ packages (rpm in this example), user space and kernel
• Add the production filesystem components

$ rm -rf debugfs ; mkdir debugfs ; cd debugfs
$ for pkg in ../tmp/deploy/rpm/*/*-dbg* ; do

../tmp/sysroots/x86_64-linux/usr/lib/rpm/rpm2cpio $pkg | cpio -i ; done
$../tmp/sysroots/x86_64-linux/usr/lib/rpm/rpm2cpio \

../tmp/deploy/rpm/*/kernel-dev* | cpio -i
$ tar xvfj ../tmp/deploy/images/qemuarm/core-image-base-qemuarm.tar.bz2
$ cd ..

31

Magic Numbers

• The script that gathers the user space debug RPM
files assumes that you have only one arch.

• If you can built multiple archs, then you need to explicitly select
the ones you need else you may end up with the wrong content.

• For this example where you have both qemux86 and qemuarm
built, for qemux86 you will only want the RPMs from "all", "i586",
and "qemux86".

$ for pkg in ../tmp/deploy/rpm/*/*-dbg* ; do
../tmp/sysroots/x86_64-linux/usr/lib/rpm/rpm2cpio $pkg | cpio -i ; done

$ ls tmp/deploy/rpm/
all armv5te i586 qemuarm qemux86
$

32

Find the Kernel Source Substitution
• We need to derive the path to the kernel source

• This is a little tricky, in that the path is subject to change since it contains
build stamp information. The easiest way of doing this is simply to inspect
the vmlinux on the host.

• Do an objdump, and search for a file directory entry (there should be some
near the top). These are what GDB uses to look up the paths for the
corresponding file entries.

• The common ancestor in the example above is:

• Remember this path for the GDB substitution step next
• Note: if you do not issue the substitute-path, the system will attempt to resolve on

the local machine and the path specified. This -will- work in many cases, as the
user will still have their project available. But where they don't, it will fail.

$ objdump --dwarf boot/vmlinux-3.14.26ltsi-yocto-standard | less
…
The Directory Table:
<projdir>/tmp/work/qemux86-poky-linux-gnueabi/linux-yocto/3.14.24+gitAUTOINC+a2…47-r0/linux/arch/arm/include/asm
<projdir>/tmp/work/qemux86-poky-linux-gnueabi/linux-yocto/3.14.24+gitAUTOINC+a2…47-r0/linux/arch/arm/kernel
…

<projdir>/tmp/work/qemux86-poky-linux-gnueabi/linux-yocto/3.14.24+gitAUTOINC+a2…47-r0/linux

33

KGDBoC - Start
• Console Window: enable KGDBoC

• Debug Window: Connect to the remote kernel (KGDBoS)
• Use kernel source substitution path from previous page

echo ttyS1 > /sys/module/kgdboc/parameters/kgdboc
echo g > /proc/sysrq-trigger
(system will stall and drop into KDB on the ‘ttyS1’ serial port)

$./tmp/sysroots/x86_64-linux/usr/bin/i586-poky-linux/i586-poky-linux-gdb
(gdb) set sysroot debugfs
(gdb) set substitute-path /usr/src/debug debugfs/usr/src/debug
(gdb) set substitute-path <projdir>/tmp/work/qemux86-poky-linux-gnueabi/linux-yocto/
3.14.24+gitAUTOINC+a2...47-r0/linux debugfs/usr/src/kernel
(gdb) file debugfs/boot/vmlinux-3.14.26ltsi-yocto-standard
Reading symbols from
/scratch/working/build-qemuarm/debugfs/boot/vmlinux-3.14.26ltsi-yocto-standard...done.
(gdb) target remote localhost:2346
Remote debugging using localhost:2346
kgdb_breakpoint ()

at
/scratch/working/build-qemuarm/tmp/work/qemux86-poky-linux/linux-yocto/...
1043 wmb(); /* Sync point after breakpoint */
(gdb)

(See: https://www.kernel.org/doc/htmldocs/kgdb/EnableKGDB.html)

34

KGDBoC - Connect
• Debug Window: Load into GDB the kernel module

• When broadcast mode is enabled what we're trying to do is iterate over
the 'message_str' value using the message_index, so set the break
point at the top of the: "if (broadcast == 1)"

(gdb) break morsemod.c:68
(gdb) c

(gdb) monitor lsmod
Module Size modstruct Used by
morsemod 4896 0xbf05a778 0 (Live) 0xbf05a000 []
nfsd 292794 0xbf0395b0 11 (Live) 0xbf000000 []
(gdb) add-symbol-file \

debugfs/lib/modules/3.14.26ltsi-yocto-standard/extra/morsemod.ko 0xbf05a000
add symbol table from file
"debugfs/lib/modules/3.14.26ltsi-yocto-standard/extra/morsemod.ko" at

.text_addr = 0xd081a000
(y or n) y
Reading symbols from
/scratch/working/build-qemuarm/debugfs/lib/modules/3.14.26ltsi-yocto-standard/extra/\
morsemod.ko...(no debugging symbols found)...done.
(gdb)

35

KGDBoC - walking
• Console Window:

• Debug Window:

root@qemux86:~# cd /sys/kernel/morsemod
root@qemux86:/sys/kernel/morsemod# echo '<' > simkey

Use 'n' to walk through the code flow
NOTE: You likely can't inspect variables (might be a bug in gdb?)

But if you disassemble you'll see something like:
(disassemble /m)

73 message_index++;
0xd081a0ea <+90>: add $0x1,%ebx
0xd081a0f7 <+103>: mov %ebx,0xd081a7c0

So the value is in the location pointed to by 0xd081a7c0:
(gdb) print *(int*)0xd081a7c0

Eventually you see:
74 if (message_index <= strlen(message_str)) {
(gdb)
75 message_index=0;

Wait, the message_index keeps getting set back to 0! We should be checking if
it -overflows-, not –underflows-!

36

KGDBoC – fix bug #2
• Change the code to be

• Rebuild ...
• (refer to previous steps for build and boot -- remember to regen the

debugfs, slides 30-32)

• Restart the module …

• Console Window:

- if (message_index <= strlen(message_str)) {
+ if (message_index >= strlen(message_str)) {

telnet localhost 2345
qemux86 login: root
root@qemux86:~# modprobe morsemod
root@qemux86:~# cd /sys/kernel/morsemod
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=0 LP=0
root@qemux86:/sys/kernel/morsemod# echo '<' > simkey
root@qemux86:/sys/kernel/morsemod# cat simkey
K=1 L=0 B=1 LP=0
root@qemux86:/sys/kernel/morsemod# while true ; do cat key ; sleep 1 ; done

37

KGDBoC – Bug #3 : stopping broadcast
• Does it work yet...

• Great, it works! Now turn it off…

• Cannot turn it off, new bug

root@qemux86:/sys/kernel/morsemod# while true ; do cat key ; sleep 1 ; done
1
1
0
1
1
1
1
.
.
.

.
^C
root@qemux86:/sys/kernel/morsemod# echo '>' > simkey
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=1 LP=0
root@qemux86:/sys/kernel/morsemod# echo '>' > simkey
root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=1 LP=0

38

KGDBoC - Reconnect
• Console Window: Setup kgdb/gdb again …

• Debug Window

echo ttyS1 > /sys/module/kgdboc/parameters/kgdboc
echo g > /proc/sysrq-trigger

$./tmp/sysroots/x86_64-linux/usr/bin/i586-poky-linux/i586-poky-linux-gdb
(gdb) set sysroot debugfs
(gdb) set substitute-path /usr/src/debug debugfs/usr/src/debug
(gdb) set substitute-path <projdir>/tmp/work/qemux86-poky-linux-gnueabi/linux-yocto/
3.14.24+gitAUTOINC+a2...47-r0/linux debugfs/usr/src/kernel
(gdb) file debugfs/boot/vmlinux-3.14.26ltsi-yocto-standard
Reading symbols from
/scratch/working/build-qemuarm/debugfs/boot/vmlinux-3.14.26ltsi-yocto-standard...done.
(gdb) file debugfs/boot/vmlinux-3.14.26ltsi-yocto-standard
Reading symbols from ```
/scratch/working/build-qemuarm/debugfs/boot/vmlinux-3.14.26ltsi-yocto-standard...done.
(gdb) target remote localhost:2346
Remote debugging using localhost:2346
kgdb_breakpoint ()

at
/scratch/working/build-qemuarm/tmp/work/qemux86-poky-linux/linux-yocto/...
1043 wmb(); /* Sync point after breakpoint */
(gdb)

39

KGDBoC – break in 'simkey_store'
• … and monitor the module …

• We know the bug is likely in 'simkey_store' because that is the
routine that is called when the user attempt to write to the
'simkey' file to control behaviors

(gdb) monitor lsmod
Module Size modstruct Used by
morsemod 3973 0xd081a640 0 (Live) 0xd081a000 []
nfsd 206660 0xd18f1160 11 (Live) 0xd18c6000 []
uvesafb 22894 0xd083baa0 1 (Live) 0xd0837000 []
(gdb) add-symbol-file
debugfs/lib/modules/3.14.26ltsi-yocto-standard/extra/morsemod.ko 0xd081a000
add symbol table from file
"debugfs/lib/modules/3.14.26ltsi-yocto-standard/extra/morsemod.ko" at

.text_addr = 0xd081a000
(y or n) y
Reading symbols from
/scratch/working/build-qemuarm/debugfs/lib/modules/.../morsemod.ko...done.
(gdb)

(gdb) break simkey_store
Breakpoint 1 at 0xd081a000: file
/scratch/working/build-qemuarm/tmp/work/qemux86-poky-linux/.../morsemod.c,
line 193.
(gdb) c

40

KGDBoC – stepping to bug
• Does it work yet... Console Window:

• Debug Window:

• Step through the code to where '>' is processed.

• Observe that due to optimization it skips over that line!
Something must be wrong here!

echo '>' > simkey

(gdb) list
(centered on the first line of the function...)

verify the input was processed correctly

(gdb) print buf[0]
$1 = 62 '>'

41

KGDBoC - disassembly
• If you disassemble the code (disassemble /m), you'll see that

both '<' and '>' are setting '1'

196 if ('<' == buf[0]) broadcast=1;
0xd081a008 <+8>: movzbl (%ecx),%eax
0xd081a00b <+11>: mov %eax,%edx
0xd081a00d <+13>: and $0xfffffffd,%edx
0xd081a010 <+16>: cmp $0x3c,%dl
0xd081a013 <+19>: je 0xd081a040 <simkey_store+64>
0xd081a043 <+67>: movl $0x1,0xd081a7c4

197 else if ('>' == buf[0]) broadcast=1;
198 else if ('[' == buf[0]) loopback=1;

0xd081a015 <+21>: cmp $0x5b,%al
0xd081a017 <+23>: je 0xd081a060 <simkey_store+96>
0xd081a063 <+99>: movl $0x1,0xd081a7c8

...pointed to by 0xd081a7c4

(gdb) print *(int *)0xd081a7c4
$2 = 1

42

KGDBoC – manually changing variables
• We can manually clear the value (note this has to be done -after-

the code sets it to 0)

• Console Window:

• OK we found the bug, go fix the code, retest the code

• Observe that it now passes all of the tests!

(gdb)
kobj_attr_store (kobj=<optimized out>, attr=<optimized out>,

buf=<optimized out>, count=2)
at

/scratch/working/build-qemuarm/tmp/work/qemux86-poky-linux/.../kobject.c:776
776 }
(gdb) set *(int *)0xd081a7c4 = 0
(gdb) print *(int *)0xd081a7c4
$3 = 0
(gdb) c

- else if ('>' == buf[0]) broadcast=1;
+ else if ('>' == buf[0]) broadcast=0;

(root@qemux86:/sys/kernel/morsemod# cat simkey
K=0 L=0 B=0 LP=0

Activity Four

Preparing the Application

44

Exercising the morseapp Application
• We will exercise the morseapp features one step at a time

• This will allow us to verify each feature as we build up to the full
functionality

• This will also provide you with the templates to easily fork and
build your own new features

• These are the morseapp components:
• morse_app: set up the non-blocking I/O, configure the interface,

provide the basic talk modes
• morse_gpio: manage the GPIO sysfs interface
• morse_codec: manage the morse/text translation
• morse_server: manage the morseapp local/remote server
• morse_client: manage the morseapp client

45

Run the morseapp Applicaton
• Start morseapp first time

• Or re-fetch and start morseapp after a rebuild

• How? The shameless hack in bb file! Bitbake knows where the
content is, so you can let it do the work. For the sake of this
class’s setup, you will need to insert your special port number
into the scp command using "-P portnum"

/usr/bin/morseapp

do_install() {
...
shameless hacking: add helper upload scripts
mkdir -p ${D}/opt
export ipaddr=`ifconfig eth0 | grep "inet addr" | sed -e "s/.*inet addr://" -e "s/ .*//"`
echo "scp –P portnum $USER@$ipaddr:${D}/usr/bin/morseapp ." > ${D}/opt/upload_morseapp.sh
echo "scp –P portnum $USER@$ipaddr:`ls ${TOPDIR}/tmp/work/*/morsemod/0.1-r0/morsemod.ko` ." > ${D}/opt/upload_morsemod.sh
echo "insmod morsemod.ko; echo 8 > /sys/kernel/morsemod/simkey" > ${D}/opt/broadcast_morsemod.sh
chmod +x ${D}/opt/upload_morseapp.sh
chmod +x ${D}/opt/upload_morsemod.sh
chmod +x ${D}/opt/broadcast_morsemod.sh

}

/opt/upload_morseapp.sh
<enter your host password>
./morseapp

46

Step by Step: the morseapp Application (1)
• Set the input device as the simulator with commands "1,5,m"

• The "loopback" mode will echo changed values from the morsemod
‘device’

• The "talk morse code" mode will support a morse conversation between
the app and the ‘device’, with backdoor keys for morsemod

[Loopback : device keys are echoed back to the device LED]
Type '#' to quit

Device Key: [*]

[Talk Morse code]

Type the '.' period key to toggle your 'key'
* a 'dit' is about 1/2 seconds
* a 'dah' is about 1 1/2 seconds (three 'dits')
* a letter space is about 1/2 seconds
* a word space is about 1 1/2 seconds

Type these keys for the simulated device
'/' : toggle the device's key
'<' : broadcast mode on
'>' : broadcast mode off

Type '#' to quit

UserKey: [*] | DeviceKey: [*] || SIM: KEY LED

47

Step by Step: the morseapp Application (2)
• The "talk text" mode will support a text-over-morse conversation

between the app and the ‘device’

• Hit the "<" to remotely start the broadcast mode

• Observe that there are dits but no dahs coming in and that
cannot be right - time to bring out the debugger!

• Quit the application with "#" and ‘q’

[Talk Text (ASCII)]
Type your text message:'
* use the letters a-z, 0-9 (case is ignored)
* use a space for word separation

Type these keys for the simulated device
'<' : broadcast mode on
'>' : broadcast mode off
'\' : force clear the out buffer

Type '#' to quit

In:[????___________________] (**) | Out: [____________________] ()

48

Using GDB - Setup

• Let’s step into the program and see how to configure
the debugging

• Console Window:

• Debug Window:

root@qemux86:~# gdbserver /dev/ttyS1 morseapp
Process morseapp created; pid = 458
Remote debugging using /dev/ttyS1

./tmp/sysroots/x86_64-linux/usr/bin/i586-poky-linux/i586-poky-linux-gdb

(gdb) set sysroot debugfs
(gdb) set substitute-path /usr/src/debug debugfs/usr/src/debug
(gdb) file debugfs/usr/bin/morseapp
Reading symbols from
/scratch/working/build-qemuarm/debugfs/usr/bin/morseapp...Reading symbols
from /scratch/working/build-qemuarm/debugfs/usr/bin/.debug/morseapp...done.
done.
(gdb) target remote localhost:2346
Remote debugging using localhost:2346
Reading symbols from debugfs/lib/ld-linux.so.2...Reading symbols from
/scratch/working/build-qemuarm/debugfs/lib/.debug/ld-2.19.so...done.
done.
Loaded symbols for debugfs/lib/ld-linux.so.2
0x4d872d00 in _start () from debugfs/lib/ld-linux.so.2
(gdb)

49

Using GDB - running

• The application was started in the halted position, so
let’s let it run (note if you see references or failed to load
messages for linux-gate.so.1, that's a virtual library that the
kernel sets up for syscalls - there is nothing to load)

• Debug Window:

• In the console follow the steps to enable Talk Text w/ Broadcast
(1,5,m,4,>)
• Use (ctrl-c) to signal the application and debugger with a SIGINT

• Debug Window:

(gdb) c

Program received signal SIGINT, Interrupt.
0x4d9381fb in __nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
(gdb) bt
#0 0x4d9381fb in __nanosleep_nocancel ()

at ../sysdeps/unix/syscall-template.S:81
#1 0x4d968273 in usleep (useconds=useconds@entry=50000)

at ../sysdeps/unix/sysv/linux/usleep.c:32
#2 0x080494ec in talk_text () at morse_app.c:263
#3 0x08049de9 in parent (p=p@entry=0xbffffd18, child_pid=460)

at morse_app.c:524
#4 0x08048d68 in main () at morse_app.c:457

50

Using GDB - stepping with ‘finishing’

• Lets take a look at talk_text (use 'finish' to complete
the current function and return to the caller)

(gdb) finish
Run till exit from #0 0x4d9381fb in __nanosleep_nocancel ()

at ../sysdeps/unix/syscall-template.S:81
usleep (useconds=useconds@entry=50000)

at ../sysdeps/unix/sysv/linux/usleep.c:33
33 }
(gdb) finish
Run till exit from #0 usleep (useconds=useconds@entry=50000)

at ../sysdeps/unix/sysv/linux/usleep.c:33
0x080494ec in talk_text () at morse_app.c:263
263 usleep(50000);
Value returned is $1 = 0
(gdb) finish
Run till exit from #0 0x4d9381fb in __nanosleep_nocancel ()

at ../sysdeps/unix/syscall-template.S:81
usleep (useconds=useconds@entry=50000)

at ../sysdeps/unix/sysv/linux/usleep.c:33
33 }
(gdb) finish
Run till exit from #0 usleep (useconds=useconds@entry=50000)

at ../sysdeps/unix/sysv/linux/usleep.c:33
0x080494ec in talk_text () at morse_app.c:263
263 usleep(50000);
Value returned is $1 = 0

51

Using GDB - stepping with ‘next’

• We can step the program with 'next'
• Note since the code is optimized stepping is out of order!
• We can also use 'until' to step until the next line of code.

• Lets set a break point on 'scan_morse_in()'

(gdb) n
263 usleep(50000);
(gdb) until
227 strcpy(disp_outTextStr,outTextStr);

Also using 'bt' to get a look at the function back trace:

(gdb) bt
#0 talk_text () at morse_app.c:227
#1 0x08049de9 in parent (p=p@entry=0xbffffd18, child_pid=460)

at morse_app.c:524
#2 0x08048d68 in main () at morse_app.c:457

(gdb) break scan_morse_in
Breakpoint 1 at 0x8049f90: file morse_codec.c, line 145.

52

Using GDB - continuing to the bug
• Continue execution until we hit that function

• You can see around 159 and 161 where the * and - are put into
the buffer... lets break on the *...

(gdb) c
Continuing.

Breakpoint 1, scan_morse_in () at morse_codec.c:145
145 char scan_morse_in(void) {

(list the sources – repeat ‘list’ until you see the below code)
(gdb) list

(gdb) break 159
(gdb) clear scan_morse_in
(gdb) c
Breakpoint 2, scan_morse_in () at morse_codec.c:159
159 strcat(inMorseBuf,"*");
(gdb) list
154 lowcnt++;
155
156 /* parse the 1->0 transition */
157 if ((1 == lastkey) && (0 == key)) {
158 if (highcnt <= dit_max_cnt)
159 strcat(inMorseBuf,"*");
160 else
161 strcat(inMorseBuf,"*");
162 highcnt=0;
163 }

53

Using GDB – finding the bug

• Ok, the problem is that we are returning dits for both
short and long signals, and the fix is simple

• You can now fix and rebuild

157 if ((1 == lastkey) && (0 == key)) {
158 if (highcnt <= dit_max_cnt)
159 strcat(inMorseBuf,"*");
160 else

- 161 strcat(inMorseBuf,"*");
+ 161 strcat(inMorseBuf,"-");

162 highcnt=0;
163 }

54

Using GDB - extra credit

• BTW, we can inspect the variables…

• Note the "optimized out’, tricks like what we did in the kernel
may be needed here... otherwise we can watch the code
flow and determine the likely values!

• Note if you are ever looking at a file and are not sure where
the source is, use ‘info source’

(gdb) print lastkey
$6 = 1 '\001'
(gdb) print key
$7 = <optimized out>
(gdb) print highcnt
$8 = 30

(gdb) info source
Current source file is morse_codec.c
Compilation directory is /usr/src/debug/morseapp/2014.10.0-r0
Located in
/scratch/working/build-qemuarm/debugfs/usr/src/debug/morseapp/2014.10.0-r0/morse_codec.c
Contains 247 lines.
Source language is c.
Compiled with DWARF 2 debugging format.
Does not include preprocessor macro info.

55

Using GDB - extra credit

• You can do the same debugging process as above,
but instead of using a serial console, use TCP/IP if
your device supports it.

• Simply replace the /dev/ttyS1 with the address and
port of the GDB client.

Console

root@qemux86:~# gdbserver 192.168.7.1:2345 morseapp
Process morseapp created; pid = 456
Listening on port 2345

Debug - Server connect such as:

target remote 192.168.7.2:2345

56

Step by Step: the morseapp Application (3)
• The working "talk text" mode will support a text-over-morse conversation

between the app and the ‘device’

• The "talk local server" mode will support simple morse code queries to a local
server

[Talk Text (ASCII)]
Type your text message:'
* use the letters a-z, 0-9 (case is ignored)
* use a space for word separation

Type these keys for the simulated device
'<' : broadcast mode on
'>' : broadcast mode off
'\' : force clear the out buffer

Type '#' to quit

In:[?p dev______________] (-*) | Out: [adbqwer_____________] (*- *-- * +4)

[Client to Local Server Mode : respond to device queries]
Server commands are:
'e' ('*') : echo an 'e' ('*')
'd' ('-**') : echo the day of the week ('mon' .. 'sun')
't' ('-') : echo the time ('hhmmss')
'f' ('**-*'): echo a fortune place
* use a space for word separation

Type these keys for the simulated device:
'/' : toggle the device's key
'\' : force clear the out buffer

Server prompt at device is 's' ('---')
Type '#' to quit

In:[_______________?____] (-) | Out: [____________________] ()
Local server:d => 'Mon'
In:[_______________?____] (----) | Out: [________mon s_______] (--- -* +5)

57

Step by Step: the morseapp Application (4)
• Test the server/client functionality

Setup the Server/Client test connection, using the default address "localhost"
• In one shell, start the test server with the "s" command
• In a second shell, start the test client with the "t" command
• Observe the passing of test strings between these components

• Run the full server/client functionality
Setup the Server/Client test connection, using the default address "localhost"
• In one shell, start the morseapp server with the "7" command
• In a second shell, start the client with the "6" command
• Use the "/" key to insert morse code clicks, observe the server replies
• It should work like the "local server" but this time over a local socket

58

Step by Step: the morseapp Application (5)
• Connect to the class remote server

• Set the class’s remote server address in the configuration page
("1" > "7") and start the client again

• It should work like the "local server" but this time over a remote
socket

Activity Five

Prototyping the IoT Edge Device

60

Building a Prototype Edge Device

• This next section describes how you can build your
own prototype device, using a breadboard and a
target’s GPIO pins

• There are three target examples included:
• Beaglebone Black
• Minnowboard MAX
• Wand Board Quad

61

Morseapp System Block Diagram

Breadboard
GPIO

Header

Morse
Talk

User Console/SSH

N
et

w
or

k

Timer
1/20 hz

ButtonLED

sysfs

Text
Talk

Morsemod
simulator

Morse to
ASCII codec

Client
module

Server
module

GPIO manager

Client
Talk

Server

Remote
Server

Non-blocking I/O child process

Kernel

62

Notes about GPIO (1)
• Double check that the GPIO pins you wish to use are actually

available (e.g. BeagleBone GPIO_20), Here is the test:
$ cd /sys/class/gpio

$ export pin=20
$ echo $pin > export

$ cd gpio${pin}

$ echo out > direction

$ echo 1 > value

$ cat value

If the value does not equal 1, then the pin is not fully enabled

• Make sure that the voltages applied match the accepted
range, as most boards use 3.3v for their pins.
• The WandBoard has only +5v available on the header yet requires

3.3v for its inputs. You can use a voltage regulator from the 5 volts, but
in this case since we are using low current we can simply use a
voltage divider resistor network to get the +3.3v reference.

63

Notes about GPIO (2)

• Be aware that some GPIO pins can only drive or
pull a low amount of current
• The Minnowboard Max is an example. In this case use can use

a simple FJN3302R Transistor (with bias resistors 10K,10K) to
provide the extra pull down current we need for the LED.

• The extension modules from the board vendors can
be your inspiration for your own circuits
• Most board vendors in this space publish the detailed

schematics of both the boards and the many available I/O
devices that they provide, which can provide examples on how
exactly to properly design your own interfaces

64

BeagleBone Black: GPIO Layout

P9

1

45

Note: GPIO_20 at least is not actually free

65

Schematic: Beaglebone Black

P9-4 +3.3 V

P9-12 Key

P9-42 LED

P9-46 GND

220 ohm

4.7K

220 ohm

220 ohm=red,red,brown 4.7K=yellow,violet,orange

66

Sample Breadboard Layout: Beaglebone Black
P9-4

+3.3 V
P9-12
Key

P9-42
LED

P9-46
GND

220 ohm=red,red,brown 4.7K=yellow,violet,orange

220 Ohm

4.7K Ohm

4.7K Ohm

67

Minnowboard Max: GPIO Layout
• http://www.elinux.org/Minnowboard:MinnowMax#Low_Speed_Expan

sion_.28Top.29
ß Power Connector

Note: The pins 21, 23, and 25 are the free GPIO pins.

68

Schematic: Minnowboard Max

JP1-4 +3.3V

JP1-25 Key

JP1-21 LED

JP1-2 GND

220 ohm

4.7K

FJN3302R
Transistor
With bias
Resistors
(10K,10K)

4.7K

220 ohm

220 ohm=red,red,brown 4.7K=yellow,violet,orange

1

2

3

1 2 3

69

Sample Breadboard Layout: Minnowboard Max
JP1-4
+3.3 V

JP1-25
Key

JP1-21
LED

JP1-2
GND

220 ohm=red,red,brown 4.7K=yellow,violet,orange

220 Ohm

4.7K Ohm

4.7K Ohm

Jumper

220 Ohm

FJN3302R

Jumper

70

WandBoard : GPIO Layout

iMX6 GPIO
(bank, number)

sysfs name JP-4 pin MorseApp

+5 V 2 +5 V
GPIO(3, 11) gpio75 4
GPIO(3, 27) gpio91 6 LED
GPIO(3, 26) gpio90 14
GPIO(6, 31) gpio191 8
GPIO(3, 8) gpio72 16
GPIO(1, 24) gpio24 10 KEY
GPIO(4, 5) gpio101 18
GPIO(7, 8) gpio200 12
GND 20 GND

• http://wiki.wandboard.org/index.php/External_gpios

H4 H3 H2 H1
pin1

Note: use 20 gauge solid core wire for temporary jumping, but soldering to a male-male 0.05 header that
you plug in is the recommend connection method for breadboarding.

Header 4

71

Schematic: WandBoard Quad

H4-2 +5 V

H4-10 Key

H4-6 LED

H4-20 GND

220 ohm

4.7K

220 ohm

1.2K

2.4K

(3.3v)

220 ohm=red,red,brown 4.7K=yellow,violet,orange 1.2K=brown,red,orange 2.4K=red,yellow,orange

72

Sample Breadboard Layout: Wandboard Quad
H4-2
+5 V

H4-10
Key

H4-6
LED

H4-20
GND

220 Ohm

4.7K Ohm

4.7K Ohm

220 ohm=red,red,brown 4.7K=yellow,violet,orange 1.2K=brown,red,orange 2.4K=red,yellow,orange

(+3.3v)

2.4K Ohm

1.2K Ohm

Jumper

Activity Eight

• Extra Credit

74

Extra Credit Exercises - 1
• Add punctuation

• There are morse codes for many punctuation marks. Add them to
the application’s codec (see for example "wikipedia").

• Changing the ‘dit’ time reference
• Add code to the kernel module to allow user configuration of the

broadcast mode timing (e.g. make it go faster)?
• Add code to the application to also allow configuration of the morse

code timing translation, and also pass that setting to the kernel
module?

• Pushing updates instead of pulling
• Modify the morseapp recipe to generate a script that pushes

instead of pulls updated content to the target. Note that while the
default root password makes it easier, each restart of QEMU
results in a different SSH signature.

75

Extra Credit Exercises - 2
• Setting the timers to account for delays

• The timers in the morseapp scan the keypad input port every 1/20
second, but what the code is really doing is adding a 1/20 delay
after all the loop’s code (like printf and socket I/O)

How would you re-write the code such that it accounts for the time
loss, and anticipates the proper delay to stay on track? How would
you collect and present those statistics for monitoring?

• Accessing the GPIO on the kernel side
• The sysfs interface provides a basic interface to the GPIO ports.

How could moving that access to the kernel side with your own
kernel module help your product?

• What functionality would you move from the application into the
kernel module (e.g. dit/dah timing)?

• Would a char block device be better that sysfs?

76

Extra Credit Exercises - 3
• Finish Peer Mode

• You can easily use this infrastructure to do peer-to-peer
communication without a central server

• When the Client starts in peer mode, it should start its own server
listening, and poll to see if the peer’s server has yet started

• The client’s main loop would be to send any pending traffic, see if
anything came in for its server, and of course check the user input.

• When the client exits, it then must also stop its server.
• If the client times out sending to the peer server, then it should

close.
• See if you can find the implementation, complete the missing

steps, and start conversing across the room in morse code.

Questions and Answers

Thank you for your
participation!

79

Appendix: Beaglebone Black Setup at Home

• Here is how you can build your project for
Beaglebone Black

$ export INSTALL_DIR=`pwd`
$ git clone -b daisy git://git.yoctoproject.org/poky
$ source poky/oe-init-build-env `pwd`/beagle
$ echo 'BBLAYERS += "/path/to/ypdd-adv-layer"' >> conf/bblayers.conf
$ echo 'MACHINE = "beaglebone"' >> conf/local.conf
$ echo 'IMAGE_INSTALL_append = " gdbserver morseapp morsemod openssl"' >> conf/local.conf
$ echo 'EXTRA_IMAGEDEPENDS_append = " gdb-cross"' >> conf/local.conf
$ bitbake core-image-base

80

Appendix: Minnowboard Max Setup at Home

• Here is how you can build your project for
Minnowboard Max

$ export INSTALL_DIR=`pwd`
$ git clone -b daisy git://git.yoctoproject.org/poky
$ git clone -b daisy git://git.yoctoproject.org/meta-intel
$ source poky/oe-init-build-env `pwd`/minnow
$ echo 'BBLAYERS += "$INSTALL_DIR/source/meta-intel"' >> conf/bblayers.conf
$ echo 'BBLAYERS += "/path/to/ypdd-adv-layer"' >> conf/bblayers.conf
$ echo 'MACHINE = "intel-corei7-64"' >> conf/local.conf
$ echo 'IMAGE_INSTALL_append = " gdbserver morseapp morsemod openssl"' >> conf/local.conf
$ echo 'EXTRA_IMAGEDEPENDS_append = " gdb-cross"' >> conf/local.conf
$ bitbake core-image-base

81

Appendix: WandBoard Setup at Home

• Here is how you can build your project for WandBoard

$ mkdir ~/bin
$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

Create the BSP directory download all of the metadata for the BSP layers

$ PATH=${PATH}:~/bin
$ mkdir fsl-community-bsp
$ cd fsl-community-bsp
$ repo init -u https://github.com/Freescale/fsl-community-bsp-platform -b daisy
$ repo sync
$. ./setup-environment build
$ echo 'BBLAYERS += "/path/to/ypdd-adv-layer"' >> conf/bblayers.conf
$ echo 'MACHINE = "wandboard-quad"' >> conf/local.conf
$ echo 'IMAGE_INSTALL_append = " gdbserver morseapp morsemod openssl"' >> conf/local.conf
$ echo 'EXTRA_IMAGEDEPENDS_append = " gdb-cross"' >> conf/local.conf
$ echo 'ACCEPT_FSL_EULA = "1"' >> conf/local.conf
$
$ bitbake core-image-base

82

Appendix: Parts List Order Information
• Here is sample ordering information for the breadboard parts. These are all very

common and can be obtained from most any source.

Part Sample Ordering Link

Basic Breadboard https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2155452_-1

220 ohm resistor https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_690700_-1

1.2K resistor https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_690881_-1

2.4K resistor https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_690953_-1

4.7 K resistor https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_691024_-1

LED, green https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_334086_-1

FJN3302R,TRANSISTOR
NPN with 10K bias
resistors, TO-92

http://www.digikey.com/product-detail/en/FJN3302RTA/FJN3302RTACT-ND/4213840

Switch N.O. suitable for
breadboard

https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_149948_-1

Jumpers Pin-to-Pin
(BeagleBone)

https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_126342_-1

Jumpers Socket-to-Pin
(MinnowMax) https://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2214563_-1

83

Appendix: Useful Links
• KObjects / sysfs

• http://lwn.net/Articles/266722/
• http://www.crashcourse.ca/wiki/index.php/Kernel_sysfs
• http://www.ug.it.usyd.edu.au/~vnik5287/sysctl.pdf
• http://www.linux.org/threads/sysfs-and-configfs.4956/
• http://www.signal11.us/oss/udev/
• http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/samples/kobject/kobject-example.c
• http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/samples/kobject/kset-example.c#L214

• Wandboard
• http://www.wandboard.org/index.php/51-20131028-wandboard-gpio-hands-on

• Beaglebone SD formatting
• http://eewiki.net/display/linuxonarm/BeagleBone+Black#BeagleBoneBlack-SetupmicroSD/SDcard
• https://www.yoctoproject.org/downloads/bsps/daisy16/beaglebone

• Parent/child for non-blocking getch
• http://www.albany.edu/~csi402/pdfs/handout_15.2.pdf

• Sockets
• http://www.tenouk.com/Module40c.html
• http://stackoverflow.com/questions/10619952/how-to-completely-destroy-a-socket-connection-in-c

