
Advanced Class

Henry Bruce, Marco Cavallini, Stephano Cetola, Sean Hudson, Joshua Lock,

Scott Murray, Tim Orling, Khem Raj, David Reyna, Marek Vasut

 Yocto Project Developer Day 

Portland  26 October 2017

2

Advanced Class

• Class Content (download these slides!):

• https://wiki.yoctoproject.org/wiki/DevDay_Portland_2018

• Requirements:

• Wireless

• SSH (Windows: e.g. “putty”)

Wireless Registration:

https://wiki.yoctoproject.org/wiki/DevDay_Portland_2018
https://wiki.yoctoproject.org/wiki/DevDay_Portland_2018

3

Agenda – The Advanced Class

9:00- 9:15 Opening session

 9:15- 9:30 Account setup , What's New

 9:30-10:15 Kernel Modules with eSDKs

10:15-10:30 Morning Break

10:30-11:15 DT overlays

11:15-12:00 Devtool et. al. #1

12:00-12:45 Lunch

12:45- 1:45 Package Feeds

 1:45- 2:15 Yocto Project - Rarely asked questions

 2:30- 2:45 Afternoon Break

 2:45- 3:15 Maintaining your Yocto Project Distribution

 3:15- 4:00 Devtool et. al. #2

 4:00- 4:30 A User's Experience

 4:30- 5:00 Recipe specific sysroots

 5:00- 5:30 Forum, Q and A

Class Account Setup

5

Yocto Project Dev Day Lab Setup

• The virtual host’s resources can be found here:

• Your Project: "/scratch/poky/build-qemuarm“

• Extensible-SDK Install: "/scratch/sdk/qemuarm“

• Sources: "/scratch/src“

• Poky: "/scratch/poky"

• Downloads: "/scratch/downloads"

• Sstate-cache: "/scratch/sstate-cache“

• You will be using SSH to communicate with your

virtual server.

6

FYI: How class project was prepared

$

$ cd /scratch

$ git clone -b rocko git://git.yoctoproject.org/poky.git

$ cd poky

$ bash # safe shell

$./scratch/poky/oe-init-build-env build

$ echo "MACHINE = \"qemuarm\"" >> conf/local.conf

$ echo "SSTATE_DIR = \"/scratch/sstate-cache\"" >> conf/local.conf

$ echo "DL_DIR = \"/scratch/downloads\"" >> conf/local.conf

$ echo "IMAGE_INSTALL_append = \" gdbserver openssh libstdc++ \

 curl \"" >> conf/local.conf

$ # Capture the build into a Bitbake/Toaster database

$ # Build the project

$ bitbake core-image-base

$ exit # clean shell

$

7

NOTE: Clean Shells!

• We are going to do a lot of different exercises in

different build projects, each with their own

environments.

• To keep things sane, you should have a new clean

shell for each exercise.

• There are two simple ways to do it:

1. Close your existing SSH connection and open a new one

-- or –

2. Do a “bash” before each exercise to get a new sub-shell,

and “exit” at the end to remove it, in order to return to a

pristine state.

Activity One

Yocto Project 2.5 (Sumo)

9

Yocto Project – What is new in 2.5 Sumo

• Yocto Project 2.5 Theme: Stability

• Yocto Project Compliance 2.0

• New website (yoctoproject.org)

• Meltdown/Spectre patches (IA so far)

• Automated Tooling

• Automated Testing

• Performance Improvements

• Kernel 4.15

• Multi-kernel support in same image

• New machines (RiscV)

• Icecream/icecc distributed compiler

• Mason, Ninja

Activity Two

Kernel Modules with eSDKs

Marco Cavallini

11

Kernel modules with eSDKs – Overview

• The Extensible SDK (eSDK) is a portable and

standalone development environment , basically an

SDK with an added bitbake executive via devtool.

• The “devtool” is a collection of tools to help

development, in particular user space development.

• We can use devtool to manage a new kernel module:

• Like normal applications is possible to import and create a

wrapper recipe to manage the kernel module with eSDKs.

12

Kernel modules with eSDKs –
Compiling a kernel module

• We have two choices

• Out of the kernel tree

• When the code is in a different directory outside of the

kernel source tree

• Inside the kernel tree

• When the code is managed by a KConfig and a Makefile

into a kernel directory

13

Kernel modules with eSDKs –
Pro and Cons of a module outside the kernel tree

● When the code is outside of the kernel source tree in

a different directory

● Advantages

– Might be easier to handle modifications than modify it into

the kernel itself

● Drawbacks

– Not integrated to the kernel configuration/compilation

process

– Needs to be built separately

– The driver cannot be built statically

14

Kernel modules with eSDKs –
Pro and Cons of a module inside the kernel tree

● When the code is inside the same directory tree of

the kernel sources

● Advantages

– Well integrated into the kernel configuration and

compilation process

– The driver can be built statically if needed

● Drawbacks

– Bigger kernel size

– Slower boot time

15

Kernel modules with eSDKs – The source code

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{

 printk("When half way through the journey of our life\n");

 return 0;

}

static void __exit hello_exit(void)

{

 printk("I found that I was in a gloomy wood\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Greeting module from the Divine Comedy");

MODULE_AUTHOR("Dante Alighieri");

16

Kernel modules with eSDKs – The Makefile

obj-m += hellokernel.o

SRC := $(shell pwd)

all:

 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules

modules_install:

 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install

• KERNEL_SRC is the location of the kernel sources.

• This variable is set to the value of the STAGING_KERNEL_DIR

within the module class (module.bbclass)

• Sources available on https://github.com/koansoftware/simplest-kernel-module.git

17

Kernel modules with eSDKs – Devtool setup

• Start a new Shell! Otherwise, the existing bitbake environment can cause

unexpected results

• Here is how the eSDK was prepared for this class account:

• This installed the eSDK into:

/scratch/sdk/qemuarm

< DO NOT ENTER THE FOLLOWING COMMANDS : ALREADY EXECUTED >

$ bitbake core-image-base -c populate_sdk_ext

$ cd /scratch/working/build-qemuarm/tmp/deploy/sdk/

$./poky-glibc-x86_64-core-image-base-armv5e-toolchain-ext-2.4.sh \

 -d /scratch/sdk/qemuarm –y

$ cd /scratch/sdk/qemuarm

$. environment-setup-armv5e-poky-linux-gnueabi

$ devtool modify virtual/kernel

$

18

Kernel modules with eSDKs – Overview

• Starting from now we are using the eSDK and not the project

• During this exercise we using two different machines

• The HOST containing the eSDK (providing devtool)

• The TARGET running the final qemuarm image

Host

eSDK:~$

Target

root@qemuarm:~$

19

Kernel modules with eSDKs – Globalsetup

• Open two terminal windows and setup the eSDK environment in each

one

$ cd /scratch/sdk/qemuarm

$ bash # safe shell

$ source environment-setup-armv5e-poky-linux-gnueabi

…

SDK environment now set up;

additionally you may now run devtool to perform development tasks.

Run devtool --help for further details.

$

20

Kernel modules with eSDKs – build the target image

• After you have setup the eSDK environment, build an image

• This will create a new image into:

/scratch/sdk/qemuarm/tmp/deploy/images/qemuarm

$ devtool build-image

21

Kernel modules with eSDKs – build the target image

• Run the image to check if everything is OK

• This will run the QEMU machine in the TARGET shell you were using

• Login using user: root (no password required)

$ runqemu qemuarm nographic

22

Kernel modules with eSDKs – Hooking a new
module into the build

• Run the devtool to add a new recipe (on the HOST side)

• This generates a minimal recipe in the workspace layer

• This adds EXTERNALSRC in an

workspace/appends/simplestmodule_git.bbappend file that points

to the sources

• In other words, the source tree stays where it is, devtool just

creates a wrapper recipe that points to it

• Note: this does not add your image to the original build engineer’s image, which

requires changing the platform project’s conf/local.conf

$ devtool add --version 1.0 simplestmodule \
 /scratch/src/kmod/simplest-kernel-module/

23

After the add

Workspace layer layout

$ tree /scratch/sdk/qemuarm/workspace/

/scratch/sdk/qemuarm/workspace/

├── appends

│ └── simplestmodule_git.bbappend

├── conf

│ └── layer.conf

├── README

└── recipes

 └── simplestmodule

 └── simplestmodule_git.bb

24

Kernel modules with eSDKs – Build the Module

• Build the new recipe (on the HOST side)

This will create the simplestmodule.ko kernel module

This downloads the kernel sources (already downloaded for you):

 linux-yocto-4.12.12+gitAUTOINC+eda4d18ce4_67b62d8d7b-r0 do_fetch

$ devtool build simplestmodule

25

Kernel modules with eSDKs – Deploy the Module

• Get the target’s IP address from the target serial console

root@qemuarm:~# ifconfig

• In the eSDK (HOST) shell, deploy the output

 (the target’s ip address may change)

• NOTE: the ‘-s’ option will note any ssh keygen issues, allowing you to

(for example) remove/add this IP address to the known hosts table

$ devtool deploy-target -s simplestmodule root@192.168.7.2

26

Kernel modules with eSDKs – Deploy Details

• In the target (qemuarm), observe the result of deployment

devtool_deploy.list 100% 108 0.1KB/s 00:00

devtool_deploy.sh 100% 1017 1.0KB/s 00:00

./

./lib/

./lib/modules/

./lib/modules/4.12.12-yocto-standard/

./lib/modules/4.12.12-yocto-standard/extra/

./lib/modules/4.12.12-yocto-standard/extra/hellokernel.ko

./usr/

./usr/include/

./usr/include/simplestmodule/

./usr/include/simplestmodule/Module.symvers

./etc/

./etc/modprobe.d/

./etc/modules-load.d/

NOTE: Successfully deployed

/scratch/sdk/qemuarm/tmp/work/qemuarm-poky-linux-gnueabi/simplestmodule/

27

Kernel modules with eSDKs – Load the Module

• In the target (qemuarm), load the module and observe

the results

root@qemuarm:~# depmod –a

root@qemuarm:~# modprobe hellokernel

[874.941880] hellokernel: loading out-of-tree module taints kernel.

[874.960165] When half way through the journey of our life

root@qemuarm:~# lsmod

Module Size Used by

hellokernel 929 0

nfsd 271348 11

28

Kernel modules with eSDKs – Unload the Module

• In the target (qemuarm), unload the module

root@qemuarm:~# modprobe -r hellokernel

[36.005902] I found that I was in a gloomy wood

root@qemuarm:~# lsmod

Module Size Used by

nfsd 271348 11

29

Kernel modules with eSDKs – automatic load of the
module at boot

• In the target (qemuarm), edit the file below and add a new line

containing the module name ‘hellokernel’

• Then reboot the Qemu machine and verify

root@qemuarm:~# vi /etc/modules-load.d/hello.conf

< insert the following line and save >

hellokernel

root@qemuarm:~# reboot

30

Questions

Activity Three

DT overlays

Marek Vasut

32

Device Tree

• Data structure describing hardware

• Usually passed to OS to provide information about

HW topology where it cannot be detected/probed

• Tree, made of named nodes and properties

• Nodes can contain other nodes and properties

• Properties are a name-value pair

• See https://en.wikipedia.org/wiki/Device_tree

• DT can contain cycles by means of phandles

• phandles provide simple references to device

definitions (e.g. “<&L2>” = level 2 cache definition)

• phandles can be used to reference objects in

different trees (e.g. use that predefined cache type)

33

Device Tree Example

• arch/arm/boot/dts/arm-realview-eb-a9mp.dts

/dts-v1/;

#include "arm-realview-eb-mp.dtsi"

/ {

 model = "ARM RealView EB Cortex A9 MPCore";

[...]

 cpus {

 #address-cells = <1>;

 #size-cells = <0>;

 enable-method = "arm,realview-smp";

 A9_0: cpu@0 {

 device_type = "cpu";

 compatible = "arm,cortex-a9";

 reg = <0>;

 next-level-cache = <&L2>;

 };

[...]

 &pmu {

 interrupt-affinity = <&A9_0>, <&A9_1>, <&A9_2>, <&A9_3>;

}; };

C-like inheritance

pHandles (“&”)

Instance = reg

34

Problem – Variable hardware

• DT started on machines the size of a little fridge

 HW was mostly static

 DT was baked into ROM, optionally modified by bootloader

• DT was good, so it spread

 First PPC, embedded PPC, then ARM …

• There always was slightly variable hardware

 Solved by patching DT in bootloader

 Solved by carrying multiple DTs

 Solved by co-operation of board files and DT

 ^ all that does not scale

35

Problem – Variable hardware – 201x edition

• Come 201x, variable HW became easy to make:

 Cheap devkits with hats, lures, capes, …

 FPGAs and SoC+FPGAs became commonplace …

 => Combinatorial explosion of possible HW configurations

• Solution retaining developers’ sanity

 Describe only the piece of HW that is being added

 Combine these descriptions to create a DT for the system

 Enter DT overlays

36

Device Tree Overlays

• DT: Data structure describing hardware

• DTO: necessary change(s) to the DT to support particular feature

 Example: an expansion board, a hardware quirk,...

• Example DTO: vendor=‘hello’, devicetype=‘dto’ (no magic)

/dts-v1/;

/plugin/;

/ {

 #address-cells = <1>;

 #size-cells = <0>;

 fragment@0 {

 reg = <0>;

 target-path = "/";

 __overlay__ {

 #address-cells = <1>;

 #size-cells = <0>;

 hello@0 {

 compatible = "hello,dto";

 reg = <0>;

}; }; }; };

Ovelay at DT root

Must match

kernel module’s

compatibilty

37

Advanced DTO example

/dts-v1/;

/plugin/;

[...]

 fragment@2 {

 reg = <2>;

 target-path = "/soc/usb@ffb40000";

 __overlay__ {

[...]

 status = "okay";

 };

 };

 fragment@3 {

 reg = <3>;

 target-path = "/soc/ethernet@ff700000";

 __overlay__ {

[...]

 status = "okay";

 phy-mode = "gmii";

 };

 };

• Enable USB port, ETH port (over “gmii” channel)

Enable this USB port

Enable this Ethernet
port, use “gigabit

media-independent interface”

38

DTO Hands-on

• Use pre-prepared meta-dto-microdemo layer

• meta-dto-demo contains:

 Kernel patch with DTO loader with ConfigFS interface

 Kernel config fragment to enable the DTO and loader

 Demo module

 Demo DTO source (hello-dto.dts)

 core-image-dto-microdemo derivative from

core-image-minimal with added DTO examples and DTC

39

DTO Example Layer Tree
\-- meta-dto-microdemo

 |-- conf

 | \-- layer.conf

 |-- recipes-core

 | \-- images

 | \-- core-image-dto-microdemo.bb

 \-- recipes-kernel

 |-- hello-dto-dto

 | |-- files

 | | \-- hello-dto.dts

 | \-- hello-dto-dto_0.1.bb

 |-- hello-dto-mod

 | |-- files

 | | |-- COPYING

 | | |-- hello-dto.c

 | | \-- Makefile

 | \-- hello-dto-mod_0.1.bb

 \-- linux

 |-- files

 | |-- 0001-ARM-dts-Compile-the-DTS-with-symbols-enabled.patch

 | |-- 0002-OF-DT-Overlay-configfs-interface-v7.patch

 | \-- enable-dtos.cfg

 \-- linux-yocto_4.12.bbappend

" dtc hello-dto-mod hello-dto-dto "

“install -m 0644 *.dts ${D}/lib/firmware/dto/”

Debug messages for module load, remove

Patch in “overlay-configfs” (*)

“+DTC_FLAGS := -@”

CONFIG_OF_OVERLAY=y
CONFIG_OF_CONFIGFS=y

40

DTO Hands-on 1/2

• Add meta-dto-demo to bblayers.conf BBLAYERS:

• Rebuild virtual/kernel and core-image-dto-microdemo

• Start the new image in QEMU (login: root, no password)

• (CTRL-A x to quit QEMU)

$ echo "BBLAYERS += \"/scratch/src/dto/meta-dto-microdemo\"" \

 >> conf/bb_layers.conf

$ echo "MACHINE = \"qemuarm\"" >> conf/local.conf

$ echo "SSTATE_DIR = \"/scratch/sstate-cache\"" >> conf/local.conf

$ echo "DL_DIR = \"/scratch/downloads\"" >> conf/local.conf

$ bitbake -c cleansstate virtual/kernel

$ bitbake core-image-dto-microdemo

$ runqemu qemuarm nographic

41

DTO Hands-on 2/2

• Compile DTO

• Load DTO

• Confirm DTO was loaded

• Unload DTO

$ dtc -I dts -O dtb /lib/firmware/dto/hello-dto.dts > \

 /tmp/hello-dto.dtb

$ mkdir /sys/kernel/config/device-tree/overlays/mydto

$ cat /tmp/hello-dto.dtb > \

 /sys/kernel/config/device-tree/overlays/mydto/dtbo

rmdir /sys/kernel/config/device-tree/overlays/mydto

ls /proc/device-tree

... hello@0 ...

ls /sys/kernel/config/device-tree/overlays/mydto

dtbo path status

cat /sys/kernel/config/device-tree/overlays/mydto/status

Applied

42

DTO encore

• DTOs can be used to operate SoC+FPGA hardware

• Done using FPGA manager in Linux (load firware into ASIC)

fragment@0 {

 reg = <0>;

 /* controlling bridge */

 target-path = "/soc/fpgamgr@ff706000/bridge@0";

 __overlay__ {

 #address-cells = <1>;

 #size-cells = <1>;

 region@0 {

 compatible = "fpga-region";

 #address-cells = <2>;

 #size-cells = <1>;

 ranges = <0 0x00000000 0xff200000 0x00080000>;

 firmware-name = "fpga/bitstream.rbf";

 fpga_version@0 {

 compatible = "vendor,fpgablock-1.0";

 reg = <0 0x0 0x04>;

 };

FPGA Manager

Firmware file

43

DTO Overlay Patch, DTO Workflows

• Why is the configfs overlay support in a patch?

• It is not being accepted into mainline kernel because of the

potential security risk (i.e. manufactures accidentally ship it in a

production device and do not lock it down)

• Example using Uboot

• Create DT baseline, point uboot to it

• Create DTO’s for each board variation to customize via uboot

• Example for newbie using DTO’s to prepare and debug DT’s

• Debug the DTO with the manual configfs overlay

• Add the DTO to uboot and then debug the hardware and kernel

modules

• Turn the DTO into a pure DT for production

44

DTO Extra
• Recommended way to load custom DTO at boot

• There are sysvinit, systemd, custom scripts, or add to uboot, however

there is no standard for that currently

• Top debugging techniques, tricks and tips:

• The “/proc/device-tree” is the image of the live DT, to check if your

overlay was applied properly

• The configfs interface provides you a status information for each overlay

• Top common user errors and gothchas

• Usually typos in the DT (no verification in DT compiler)

• Not exact “compatible” match between DTO/kernel module

• Anything special about DTO's vis-à-vis Yocto Project

• Not really, they are orthogonal

• The “dtc” compiler is part of openembedded-core layer

45

DTO Extra

• Examples of DTO’s in production systems

• RaspberryPi (hats)

• Beaglebone (cape manager)

• Some Intel boards (e.g. via ACPI)

• More on DT at:

• https://www.devicetree.org/

• ePAPR specification of DT:

• https://elinux.org/images/c/cf/Power_ePAPR_APPROV

ED_v1.1.pdf

• Contact:

• Contact: Marek Vasut marek.vasut@gmail.com

• https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf

https://elinux.org/images/c/cf/Power_ePAPR_APPROVED_v1.1.pdf
https://elinux.org/images/c/cf/Power_ePAPR_APPROVED_v1.1.pdf
https://elinux.org/images/c/cf/Power_ePAPR_APPROVED_v1.1.pdf
mailto:marek.vasut@gmail.com
https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf
https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf
https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf
https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf

Activity Four

Devtool – Part 1

Tim Orling, Sean Hudson, David Reyna

47

d e v t o o l – Overview

• devtool is a collection of tools to aid developer workflow:
• Create, update, modify recipes in the build environment

• Streamlines development by performing repetitive tasks via tinfoil (wrapper
around bitbake) and recipetool.

• Application development in user space (with eSDK)

• The extensible SDK (eSDK) is a portable and standalone
development environment , basically an SDK with an added
bitbake executive via devtool.

• The eSDK runs in a Linux environment, but we it can be run in a Mac
OS X (or Windows) environment using CROPS (Docker containers).
• https://github.com/crops/extsdk-container

• https://github.com/crops/docker-win-mac-docs/wiki

• https://hub.docker.com/r/crops/extsdk-container/

• NOTE: this session will focus on the layer maintainer/system integrator’s
workflow (build environment), the second session this afternoon will focus on
eSDK application developer workflow

https://github.com/crops/extsdk-container
https://github.com/crops/extsdk-container
https://github.com/crops/extsdk-container
https://github.com/crops/extsdk-container
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://hub.docker.com/r/crops/extsdk-container/
https://hub.docker.com/r/crops/extsdk-container/
https://hub.docker.com/r/crops/extsdk-container/
https://hub.docker.com/r/crops/extsdk-container/

48

d e v t o o l – Types of projects currently supported

• Autotools (autoconf and automake)

• Cmake

• qmake

• Plain Makefile

• Out-of-tree kernel module

• Binary package (i.e. “-b” option)

• Node.js module

• Python modules that use setuptools or distutils

• ROS (Robot Operating System v1)

49

d e v t o o l – Overview
Example Workflow

workspace
devtool add

Recipe

source code

binary

devtool

deploy-target

devtool

build

devtool

edit-recipe

Development phase

Host

Testing

phase

On target board or

in emulator shell

collect issues

test binary

Release

phase

Repo

devtool

finish

• Create a new recipe

• Create workspace

layer

• Build it

• Deploy to target

• Testing testing testing

• Correct any findings in

the recipe

• Merge new recipe into

layer

50

d e v t o o l – Overview

51

d e v t o o l - Baking in a sandbox

Class will cover these use cases for devtool

• Development cycle with a new recipe

• Create a recipe from a source tree, then we will build,

deploy, edit, build, and deploy

• Development cycle to modify the source of existing

recipe

• Extract recipe and source, then edit, build, and deploy

• Development cycle to upgrade an existing recipe

• Extract recipe and source, then edit, build, and deploy

52

d e v t o o l - subcommands
Beginning work on a recipe:
 add Add a new recipe

 modify Modify the source for an existing recipe

 upgrade Upgrade an existing recipe

Getting information:
 status Show workspace status

 search Search available recipes

Working on a recipe in the workspace:
 build Build a recipe

 edit-recipe Edit a recipe file in your workspace

 configure-help Get help on configure script options

 update-recipe Apply changes from external source tree to recipe

 reset Remove a recipe from your workspace

Testing changes on target:
 deploy-target Deploy recipe output files to live target machine

 undeploy-target Undeploy recipe output files in live target

 build-image Build image including workspace recipe packages

Advanced:
 create-workspace Set up workspace in an alternative location

 extract Extract the source for an existing recipe

 sync Synchronize the source tree for an existing recipe

53

Activity 0 – Setup our build enviroment
• Start a new Shell! Otherwise, the existing bitbake environment can cause

unexpected results

<open new clean shell>
$ cd /scratch

• Source the build environment

 $. ./poky/oe-init-build-env build-devtool

• Use the pre-populated downloads and sstate-cache
$ sed -i -e 's:#DL_DIR ?= "${TOPDIR}/downloads":DL_DIR ?=
"/scratch/downloads":g' conf/local.conf

$ sed -i -e 's:#SSTATE_DIR ?= "${TOPDIR}/sstate-cache":SSTATE_DIR ?=
"/scratch/sstate-cache":g' conf/local.conf

• Set machine to qemuarm

$ sed -i -e 's:#MACHINE ?= "qemuarm":MACHINE ?= "qemuarm":g'
conf/local.conf

• (Optional) On limited compute machines (laptop), use rm_work

$ echo ‘INHERIT += ”rm_work”’ >> conf/local.conf

54

Activity 0 – Setup a new layer to receive our work

• Best practice is to use a function/application

layer, so let’s create one

 $ pushd ..

 $ bitbake-layers create-layer meta-foo

 $ popd

• Add our new layer to our configuration

 $ bitbake-layers add-layer ../meta-foo

• Setup complete! Time to create a new recipe…

55

Activity 1: Add a new recipe
• Optional: build core-image-minimal first

(this has already been done in the class VMs)

$ pwd
(should be in /scratch/poky/build-qemu)
$ devtool build-image core-image-minimal

• Add our new recipe

 $ devtool add nano \
 https://www.nano-editor.org/dist/v2.7/nano-2.7.4.tar.xz

• Examine what devtool created:
$ ls workspace
$ find workspace/recipes
$ pushd workspace/sources/nano/
$ git log
$ popd

• Now we are ready to build it:

$ devtool build nano
$ devtool build-image core-image-minimal

56

Activity 1: Add a new recipe (continued)

• Run our image in QEMU

 $ runqemu slirp nographic qemuarm

 (login as root, no password)

• Run our application

 $ nano

 (CTRL-x to exit nano)

• Examine where it was installed

 $ ls /usr/bin/nano

 $ exit

 (CTRL-a x to exit qemu)

57

Activity 1: Add a new recipe (continued)

• “Publish” our recipe

 $ devtool finish nano ../meta-foo

• Clean up

 $ rm –rf workspace/sources/nano

• Add our recipe to our image

 $ echo ’CORE_IMAGE_EXTRA_INSTALL += “nano”’ >> conf/local.conf

• Profit!

58

Activity 2: Modify a recipe

• Sanity check

$ pwd

(should be in /scratch/build-devtool)

• Re-inforce what we just learned
$ devtool add hello \

 https://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz

$ devtool build hello

$ devtool build-image core-image-minimal

$ runqemu slirp nographic qemuarm

 (login as root, no password)

• Run our new application
$ hello

Hello, world!

59

Activity 2: Modify a recipe (continued)

• Sanity check
$ pwd
(should be in /scratch/build-devtool)

• Re-inforce what we just learned
$ devtool add hello \
 https://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz
$ devtool build hello
$ devtool build-image core-image-minimal
$ runqemu slirp nographic qemuarm
 (login as root, no password)

• Run our new application
$ hello
Hello, world!
$ exit
(Ctrl-a x to exit qemu)

• Publish our new recipe and cleanup
$ devtool finish hello ../meta-foo
$ rm –rf workspace/sources/hello

60

Activity 2: Modify a recipe (continued)

• Might need to let git know who you are
$ git config --global user.email
you@example.com
$ git config --global user.name "Your Name”

• Modify our application’s source code
$ devtool modify hello
$ pushd workspace/sources/hello
$ sed -i -e 's:"Hello, world!":"Hello, Portland!":g'
src/hello.c
$ git log
$ git add src/hello.c
$ git commit -m "Change world to Portland"

• Build and run our modified application
$ devtool build-image core-image-minimal
$ runqemu slirp nographic qemuarm
(login as root, no password)
$ hello
Hello, Portland!
$ exit
(Ctrl-a x to exit qemu)

mailto:you@example.com

61

Activity 2: Modify a recipe (continued)

• Publish our modifed source and recipe and cleanup
$ popd
$ devtool finish hello ../meta-foo
$ rm –rf workspace/sources/hello

• Review what changed
$ pushd ../meta-foo/recipes-hello/hello
$ ls
$ cat hello_2.10.bb
$ cat hello_%.bbappend
$ cat hello/0001-Change-world-to-Portland.patch
$ popd

• Cleanup

$ rm –rf workspace/sources/hello

• Profit!

62

Activity 3: Upgrade a recipe

• (Optional) Add meta-openembedded/meta-oe layer
$ pushd /scratch
$ git clone https://github.com/openembedded/meta-openembedded
$ popd
$ bitbake-layers add-layer ../meta-openembedded/meta-oe

• Upgrade to a specific version
$ devtool upgrade nano --version 2.9.4

• Review what changed
$ tree workspace/recipes/nano
 (meta-oe version)
 workspace/recipes/nano
 ├── nano_2.9.4.bb
 └── nano.inc
 (scratch version)
 workspace/recipes/nano
 └── nano_2.9.4.bb
$ cat workspace/recipes/nano/nano_2.9.4.bb

63

Activity 3: Upgrade a recipe (continued)

• Test our upgraded application

$ devtool build-image core-image-minimal

$ runqemu slirp nographic qemuarm

(login as root, no password)

$ nano

(Ctrl-x to exit nano)

$ exit

(Ctrl-a x to exit qemu)

• Publish our work and cleanup

$ devtool finish nano ../meta-foo

$ rm –rf workspace/sources/nano

• Profit!

64

d e v t o o l - References

1. Yocto devtool documentation
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-
your-workflow

2. Tool Author Paul Eggleton’s ELC Presentation:
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_20
15_0.pdf

3. Trevor Woerner’s Tutorial
https://drive.google.com/file/d/0B3KGzY5fW7laQmgxVXVTSDJHeFU/view?usp=sharing

4. Sean Hudson’s YP Dev Day Presentation (more focused on eSDK workflow):
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf

5. Instructor’s ELC Presentation:
https://elinux.org/images/e/e2/2017_ELC_--
_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf

https://www.youtube.com/watch?v=CiD7rB35CRE

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
https://drive.google.com/file/d/0B3KGzY5fW7laQmgxVXVTSDJHeFU/view?usp=sharing
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://www.youtube.com/watch?v=CiD7rB35CRE
https://www.youtube.com/watch?v=CiD7rB35CRE
https://www.youtube.com/watch?v=CiD7rB35CRE

Activity Five

On Target Development using Package Feeds

Stephano Cetola

66

Package Feed Overview

• Tested package types: rpm and ipk

• For rpm packages, we now use DNF instead of smart

• Setting up a package feed is EASY

• stephano.cetola@linux.intel.com

• @stephano approves this message

• Signing your packages and package feed is doable

• Two major use cases:

• On target development (faster and smarter)

• In the field updates (YMMV)

mailto:stephano.cetola@linux.intel.com

67

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

68

Setting up a package feed - Target Setup

• Install Package Management on the target

• EXTRA_IMAGE_FEATURES += " package-management "

• Set the correct package class

• PACKAGE_CLASSES = "package_rpm”

• Customize the feed (optional)

• PACKAGE_FEED_URIS = http://my-server.com/repo

• PACKAGE_FEED_BASE_PATHS = "rpm”

• PACKAGE_FEED_ARCHS = ”all armv7at2hf-neon beaglebone"

• Edit /etc/yum.repos.d/oe-remote-repo.repo (optional)

• enabled=1

• metadata_expire=0

• gpgcheck=0

http://my-server.com/repo
http://my-server.com/repo
http://my-server.com/repo
http://my-server.com/repo
http://my-server.com/repo

69

Setting up a package feed

• Publish a repo, index the repo, and…

• You are now running a web server on port 5678

$ bitbake core-image-minimal

...

$ bitbake package-index

...

$ twistd -n web --path tmp/deploy/rpm -p 5678

[-] Log opened

[-] twistd 16.0.0 (/usr/bin/python 2.7.12) starting up.

[-] reactor class: twisted.internet.epollreactor.EPollReactor.

[-] Site starting on 5678

70

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

71

Caveats

• Running bitbake world can take some time

• You may want to update your repo as needed

• Serve the repo from a build machine

• Or simply rsync to a webserver

• Do not forget to run `bitbake packge-index`

• Package index will not auto-update

• Good practice is to dogfood your repo

72

Understanding RPM Packages and repomd.xml

• repomd == Repo Metadata

• This is the “package index”

• Repository Tools

• createrepo

• rpm2cpio

• dnf (replaces yum)

• yum-utils (historical)

• Important Commands

• rpm -qip (general info)

• rpm -qpR (depends)

• https://wiki.yoctoproject.org/wiki/TipsAndTricks/UsingRPM

https://wiki.yoctoproject.org/wiki/TipsAndTricks/UsingRPM
https://wiki.yoctoproject.org/wiki/TipsAndTricks/UsingRPM

On Target Demo

Beaglebone Repo on AWS

74

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

75

Signing The Packages

• Inherit bbclass to enable signing functionality

• INHERIT += “sign_rpm”

• Define the GPG key that will be used for signing.

• RPM_GPG_NAME = "key_name”

• Provide passphrase for the key

• RPM_GPG_PASSPHRASE = "passphrase"

76

Signing The Package Feed

• Inherit bbclass to enable signing functionality

• INHERIT += “sign_package_feed”

• Define the GPG key that will be used for signing.

• PACKAGE_FEED_GPG_NAME = "key_name”

• Provide passphrase for the key

• PACKAGE_FEED_GPG_PASSPHRASE_FILE =

"passphrase"

77

Signing The Package Feed (optional)

• GPG_BIN

• GPG binary executed when the package is signed

• GPG_PATH

• GPG home directory used when the package is signed.

• PACKAGE_FEED_GPG_SIGNATURE_TYPE

• Specifies the type of gpg signature. This variable applies

only to RPM and IPK package feeds. Allowable values for

the PACKAGE_FEED_GPG_SIGNATURE_TYPE are

"ASC", which is the default and specifies ascii armored, and

"BIN", which specifies binary.

78

Testing Packages with ptest (Optional? Not really!)

• Package Test (ptest)

• Runs tests against packages

• Contains at least two items:

1 the actual test (can be a script or an elaborate system)

2 shell script (run-ptest) that starts the test (not the actual test)

• Simple Setup

• DISTRO_FEATURES_append = " ptest”

• EXTRA_IMAGE_FEATURES += "ptest-pkgs”

• Installed to: /usr/lib/package/ptest

79

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

80

Keeping feeds secure

• PACKAGE_FEED_GPG_PASSPHRASE_FILE

• This should NOT go in your configuration as plain text.

• Is your code proprietary?

• You should probably be shipping a binary in Yocto

• bin_package.bbclass: binary can be .rpm, .deb, .ipk

• Have you thought about DEBUG_FLAGS?

• See bitbake.conf for more details

• The flags can be filtered or set in the recipe

81

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

82

The Future of Package Feeds – Can We Upgrade?

• Repository

• Switch to new source entries

• Remove unknown (3rd party) repositories

• Package

• Check there are no broken or renamed packages

• Versioning: what happens when they go backwards

• Remove and install specific packages (release dependent)

• Remove blacklisted / obsolete and add whitelisted

• Dreaming Even Bigger…

• Kernels, Desktops (UI), Permissions, Users, Groups

Activity Six

Yocto Project - Rarely asked questions

Khem Raj

84

How to add layers to Workspace

• bitbake-layers

• add-layer/remove-layer – Add/Remove a layer to workspace

• show-layer – Show current list of used layers

• show-recipes – List available recipes

• show-appends – List appends and corresponding recipe

• show-overlayed – List overlayed recipes

85

Are there some Workspace helper Tools

• bitbake-whatchanged

• print what will be done between the current and last builds

 $ bitbake core-image-sato

 # Edit the recipes

 $ bitbake-whatchanged core-image-sato

86

How to make changes in workspace

• Prepare a package to make changes
devtool modify <recipe>

• Change sources
• Change into workspace/sources/<recipe>

• Edit …..

• Build Changes
$ devtool build <recipe>

• Test changes
$ devtool deploy-target <recipe> <target-IP>

• Make changes final
$ devtool finish <recipe> <layer>

87

How to enquire package information ?

• oe-pkgdata-util - queries the pkgdata files written out during do_package

subcommands:

 lookup-pkg Translate between recipe-space package names
and

 runtime package names

 list-pkgs List packages

 list-pkg-files List files within a package

 lookup-recipe Find recipe producing one or more packages

 package-info Show version, recipe and size information for
one or

 more packages

 find-path Find package providing a target path

 read-value Read any pkgdata value for one or more
packages

 glob Expand package name glob expression

Use oe-pkgdata-util <subcommand> --help to get help on a specific
command

88

How to run meta-data self tests (unit tests)

• oe-selftest
Script that runs unit tests against bitbake and

other Yocto related tools. The goal is to
validate tools functionality and metadata
integrity

• List available tests

$ oe-selftest –l

• Run all tests

$ oe-selftest --run-all-tests

• Run Selective Unit Test

$ oe-selftest -r devtool
devtool.DevtoolTests.test_devtool_add_fetch_simpl
e

• https://wiki.yoctoproject.org/wiki/Oe-selftest

https://wiki.yoctoproject.org/wiki/Oe-selftest
https://wiki.yoctoproject.org/wiki/Oe-selftest
https://wiki.yoctoproject.org/wiki/Oe-selftest

89

How to run image auto-test

• Can test image (-c testimage) (-c testimage_auto)

• Testing SDK (-c testsdk and –c testsdkext)

• https://www.yoctoproject.org/docs/latest/dev-manual/dev-

manual.html#performing-automated-runtime-testing

INHERIT += "testimage"

DISTRO_FEATURES_append = " ptest"

EXTRA_IMAGE_FEATURES_append = " ptest-pkgs"

##TEST_SUITES = "auto"

TEST_IMAGE_qemuall = "1"

TEST_TARGET_qemuall = "qemu”

TEST_TARGET ?= "simpleremote"

TEST_SERVER_IP = "10.0.0.10"

TEST_TARGET_IP ?= "192.168.7.2"

INHERIT += "testsdk"

SDK_EXT_TYPE = "minimal"

https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing

90

How to send Code upstream

• create-pull-request

 Examples:

 create-pull-request -u contrib -b joe/topic

• send-pull-request

Examples:

Send-pull-request –a –p pull-XXXX

91

How to Customize Distro

• Example poky-lsb

require conf/distro/poky.conf

require conf/distro/include/security_flags.inc

DISTRO = "poky-lsb"

DISTROOVERRIDES = "poky:linuxstdbase"

DISTRO_FEATURES_append = " pam largefile opengl"

PREFERRED_PROVIDER_virtual/libx11 = "libx11"

Ensure the kernel nfs server is enabled

KERNEL_FEATURES_append_pn-linux-yocto = " features/nfsd/nfsd-
enable.scc"

Use the LTSI Kernel for LSB Testing

PREFERRED_VERSION_linux-yocto_linuxstdbase ?= "4.14%"

92

• odroid-c2-hardkernel.conf

#@TYPE: Machine

#@NAME: odroid-c2-hardkernel

#@DESCRIPTION: Machine configuration for
odroid-c2 systems using uboot/kernel
from hardkernel supported vendor tree

#@MAINTAINER: Armin Kuster
<akuster808@gmail.com>

require conf/machine/odroid-c2.conf

SERIAL_CONSOLE = "115200 ttyS0"

UBOOT_CONSOLE = "console=ttyS0,115200"

KERNEL_DEVICETREE_FN_odroid-c2-
hardkernel = "meson64_odroidc2.dtb"

KERNEL_DEVICETREE_odroid-c2-hardkernel =
"meson64_odroidc2.dtb"

• odroid-c2.conf

#@TYPE: Machine

#@NAME: odroid-c2

#@DESCRIPTION: Machine configuration for
odroid-c2 systems

#@MAINTAINER: Armin Kuster
<akuster808@gmail.com>

require conf/machine/include/amlogic-
meson64.inc

DEFAULTTUNE ?= "aarch64"

include conf/machine/include/odroid-
default-settings.inc

EXTRA_IMAGEDEPENDS += "u-boot secure-
odroid"

KERNEL_DEVICETREE_FN = "meson-gxbb-
odroidc2.dtb"

KERNEL_DEVICETREE = "amlogic/meson-gxbb-
odroidc2.dtb"

How to Customize Machine

93

How to setup/use feeds ?

• Configuring feeds in image

$ PACKAGE_FEED_URIS = "http://10.0.0.10:8000/"

• Start a http server in deploydir

$ cd tmp/deploy/ipk

$ python3 -m http.server 8000

• Run Package manager on booted target

$ opkg update

$ opkg upgrade

94

Questions

Activity Seven

Maintaining Your Yocto Project Based Distribution

Scott Murray

96

Goals

• Lay out some of the distribution maintenance options

and their tradeoffs

• Discuss some potential pitfalls that may not be

immediately obvious

• Discuss some specific build, security, and

compliance maintenance tasks

97

Caveats

• I've done several distribution upgrades for customers,

a few major and a few minor, but their requirements

might not reflect yours, and my decisions and advice

shouldn't be taken as gospel

• Every project has its own business requirements that

will drive the decisions on things like upgrade

strategy and schedule

98

Distribution Maintenance Requirements

• Most users of the Open Embedded and the Yocto

Project poky releases are building sophisticated

products that contain a lot more software than

embedded systems of the past

• With extra software and features, there is an

increased need to address bugs and security issues,

especially with more and more products including

network accessible services

• It is now rare that you can sell a product and not have

to worry about providing customers some form of

software maintenance scheme

99

Distribution Maintenance Planning

• At the moment, Yocto Project releases receive one to

two years of upstream support, as only the last three

releases are maintained by the project

• There are no long term releases (at the moment)

• So, you need to consider a commercial support

solution (Wind River, Mentor, etc.), or you need to

plan on doing it yourself

100

Distribution Maintenance Planning (continued)

• There are two approaches to maintaining your distribution
yourself:
• Stay on the proverbial upgrade treadmill and track Yocto Project

releases

• Stick with a Yocto Project release and backport changes as
required

• The first option requires an investment into tracking
upstream that may be a change for some companies'
development process

• The difficulty of the second option starts to scale
significantly with a larger number of packages and
increasing length of time after release

• Upgrade frequency could be gated by your customer
requirements, i.e. they may not want or be able to take
upgrades quickly. This might influence your decision...

101

Yocto Project Release Tracking

• The selection of release at project start, or as a target

for an upgrade affects the maintenance effort going

forward

• The general recommendation from the community is

to track master up until the Yocto Project release just

before your target product release date

• This maximizes upstream support

• A common behavior is to start a project using the

release available at the time, this is less desirable, as

it means you are losing some or all of the benefit of

the upstream support window

102

Backport Packages or Patches?

• The community strategy is to backport patches to fix

bugs or security issues, rather than upgrading

packages to new versions in stable Yocto Project

releases

• This may not work for some product requirements

when you are doing the maintenance yourself

• Security team requirements, e.g. checking tools looking for

specific versions, or customer optics

• OpenSSL, OpenSSH, libxml2, etc.

• Demand for new features provided by a new version of a

package

103

Recipe Backporting Tips

• If backporting recipes for package upgrades, keep

them in a separate layer from the rest of your

distribution recipes

• Avoids cluttering your actual distribution layer with hopefully

temporary cruft

• And keeps your distribution layer in compliance with Yocto

Project expectations

• On a distribution upgrade, you'll need to rationalize

changes, and potentially remove now unnecessary

backports

• bitbake-layers show-overlayed

104

Vendor BSP Layers

• May tie you to a Yocto Project release unless you can

invest the required effort into upgrading yourself

• May have a release schedule that gates upgrades

• e.g. meta-ti, meta-renesas

• May provide an older kernel that gates upgrading

other packages

• It's not always feasible, but sticking to a BSP layer

that meets Yocto Project BSP requirements can

hopefully avoid issues

105

Other Layers

• May not have release branches, and float on master

• This can cause compatibility problems if you want to use

them with an older release

• May be intermittently maintained

• Do some research

• Look at the layer's commit history to see how actively it is

maintained

• If it's hosted on github, look at activity and rating there

• Forewarned is forearmed, you want to avoid surprises

during future upgrades

106

Maintaining Local Configuration

• Keep your local metadata configuration (BSP and

machine, distribution, etc.) in your own set of layers

• Note that they do not necessarily need to be in separate git

repositories, but doing so can keep change history clearer

• Think about using tools for layer repository

management such as Android repo, myrepo, Wind

River's setuptool, etc., and planning ahead on having

a branching and release strategy for metadata

repositories

• Makes checkout and build more straightforward

• In addition to facilitating tracking your product releases, this

allows upgrade development on a branch

107

Distribution Configuration Tips

• Avoid local changes to oe-core, meta-poky, etc. if at

all possible

• If something cannot be accomplished with a bbappend, it is

better to work with upstream to try to come up with a

solution, as carrying such changes is just one more thing

that can become a time sink on a future upgrade

• Look at pushing new recipes for FOSS packages

upstream to increase the eyes looking at it and get

feedback

• Increases probability of things "just working" on upgrade

• But don't just throw it over the wall, seriously consider

signing up as maintainer of whatever you upstream

108

Distribution Configuration Tips (continued)

• Attempt to minimize local configuration changes

• This can be tough since there is a tension between required local

customizations and associated potential maintenance burden

• Some simple changes can give surprising problems on

upgrade

• e.g. Changes to fsperms.txt, base-files can later result in

packaging errors that do not immediately seem related

• Changes you may need for functional requirements can

result in significant effort being required down the road

• e.g. FIPS support. If you locally bbappend the RedHat set of

OpenSSL patches, keeping things building can be time-

consuming

109

Distribution Configuration Tips (continued)

• Some tools/projects can increase the burden of doing an
upgrade

• e.g. node.js, ruby, rust, go

• If you have any local recipes to add modules, dependencies can drive
recipe upgrades you might have not expected to need to do

• as well, backporting a recipe for a package based on one of
these might have a significant ripple effect

• gcc upgrades can be painful if you have much in-house software

• Recent releases have been significantly improving warnings, which is
a problem if you use/rely on -Werror

• I've done a few upgrades where the effort required to fix in-house
code issues outweighed that required for uprading the YP release by
several times

• If you're staying on the upgrade treadmill, it's possible you may hit this
every couple of years, as the pace of gcc releases has increased, and
OE only carries recipes for two gcc version branches at a
time. Forward porting gcc recipes is involved and considered a bad
strategy

110

Preparing for a Distribution Upgrade

• Can be difficult resource-wise, but consider regularly

test building against master

• Gives a heads up on changes that impact your build

• If you have robust upgrade strategy and are doing regular

product updates, having it be part of your workflow should

ease keeping up as opposed to coming in completely fresh

on a new YP release

• Look at yoctoproject.org documentation on per-

release changes

• http://www.yoctoproject.org/docs/current/ref-manual/ref-

manual.html#migration

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration

111

Build-related Maintenance

• For reproducibility and disaster recovery, it is useful
to archive build output such as images and SDKs

• If you make use of SDKs, it is common to have significant
churn during development as additions are made. Using the
SDK_VERSION variable to number your internal SDK
releases can help with reproducibility

• Archiving the downloads directory for use as a source
pre-mirror can be quite useful

• In some organizations, doing so can be required for either
reproducibility or for building on systems without network
access

• You may need to investigate tools for binary storage to
reduce disk space usage

112

Security-related Maintenance

• Security fixes are a likely source of pressure for maintenance
releases, knowing what possible issues affect your distribution is
extremely valuable

• Morty and newer releases have cve-check.bbclass, which uses cve-
check-tool to check built packages for CVEs
• Not hard to port back to older YP releases

• Note that there is ongoing discussion about the need for a better scanning tool

• The yocto-security mailing list is used to notify about high profile
security fixes
• Should soon also act as a source of notifications about labelled CVE security

fixes coming into the supported releases

• Otherwise, you'll need to rely on sources such as:
• cve.mitre.org

• cvedetails.com

• Other Linux distributions' (RedHat, Debian, etc.) security notification sites

113

Compliance-related Maintenance

• Planning for source and build system release upfront can
save a lot of anxiety later

• It is recommned that you use the provided license
publishing and source archiving tools

• http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
manual.html#maintaining-open-source-license-compliance-during-
your-products-lifecycle

• You may need to post-process the output to match your legal
team's requirements, it is better to have an idea of what those are
as early as possible

• Similar to archiving of the downloads directory, keeping
source archiving enabled and storing the output may be
easier than doing special compliance collection builds, if
you can manage the space requirements

http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle

114

References

• Best Practices to Follow When Creating Layers​

 http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-

 manual.html#best-practices-to-follow-when-creating-layers

• Making Sure Your Layer is Compatible With Yocto Project

 http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-

manual.html#making-sure-your-layer-is-compatible-with-yocto-

project

http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#best-practices-to-follow-when-creating-layers
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#making-sure-your-layer-is-compatible-with-yocto-project

Activity Eight

Devtool – Part 2

Tim Orling

116

• Slides will be found later today at:

• https://wiki.yoctoproject.org/wiki/DevDay_Portland_2018

• We will announce when then are merged to main

deck!

https://wiki.yoctoproject.org/wiki/DevDay_Portland_2018

Activity Nine

A User's Experience

Henry Bruce

118

What I’ll be talking about

• Learnings from my painful ramp on Yocto

• Get similar experiences from the audience

• Funnel these learnings into topics in the new

Development Tasks Manual

• Review improvements in usability over the past few

years

119

General areas I’ll be covering

• Proxies

• Debugging build errors

• Writing recipes

• Recipes vs. Packages

• Application Development

• Cool things I stumbled across

• Improvements

120

Some context

• Started as an open source neophyte

• Had never really used git or dug into Linux

• Spent six months in extreme pain

• Mainly due to OpenJDK

• For the next year I was learning

• After 2 years I felt I could competently help others

• Over 3 years later, there's still so much to learn

• I should have taken better notes

121

Proxies

• A common problem for new users

• Proxy wiki page has 135k hits
• https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

• Environment variable approach covers most cases
• But fails when non-fetch tasks reach out to network

• This includes most node.js recipes

• How important is network isolation for post fetch tasks?

• Chameleonsocks has been failsafe for me
• But some say this an abuse of docker

• What’s your solution?

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

122

When things go wrong

• You’ve gone through the quick start guide and have

figured out how to add packages to an image

• You’re feeling pretty good but then you get a build

error.

• Due to many moving parts it’s easy to panic when

something breaks

• Or at least it was for me

123

It broke – what would have helped?

• Nicer output from bitbake on bad directory/file names

• Understanding the task pipeline

• fetch / unpack / configure / build / install / package

• Knowing how to generate dependency graph

• Decoding “magic” folder names in tmp/work

• Understanding recipe vs. package

• Knowing how to run specific task for specific recipe

• Knowing what’s packaged and in rootfs

124

Recipes

• Plenty of resources to writing simple recipes

• But then there seems to be a gap

• Can be hard to work out what a recipe is doing

pn = d.getVar('PN', 1)

metapkg = pn + '-dev'

d.setVar('ALLOW_EMPTY_' + metapkg, "1")

blacklist = [metapkg]

metapkg_rdepends = []

packages = d.getVar('PACKAGES', 1).split()

for pkg in packages[1:]:

 if not pkg in blacklist and pkg.endswith('-dev'):

 metapkg_rdepends.append(pkg)

d.setVar('RRECOMMENDS_' + metapkg, ' '.join(metapkg_rdepends))

• Walk through a couple of good citizens in oe-core?

125

Recipes and packages

• Easy to assume there is 1:1 mapping

• Sometimes there isn’t

• devtool search rocks

• Sub-packages can trip you up

• OpenCV vs. UPM

• Creating sub-packages for large project seems to be

the “right” pattern

• But I can’t find obvious guidance in docs

• Thoughts?

126

Application Development

• I was initially confused by the terminology

• ADT, SDK, eSDK, toolchain

• In retrospect ADT seemed the clearest naming

• I’m now working on a real-time SDK

• Yocto built Linux is our initial target platform

• I tell my team to develop for the target using the Yocto SDK

• Confusion all round

• Eclipse

• Broken when I first tried

• I need to get back to it

127

Improvements

• eSDK and devtool

• Recipetool

• ROS support

• Is it worth investing more, or do returns diminish?

• Package feeds

• Credit to dnf (setting server means build checks if it’s there)

• But package-index is a big gotcha

• Development Tasks Manual

• CROPS

• Who’s using it?

128

Cool things I stumbled across

• PACKAGECONFIG

• INSANE_SKIP

• Overrides

• Layer dependencies

• Setting package variables from outside recipe

• Conditional logic with python

• Adding package to image if its layer is present

• What’s you favorite?

Activity Ten

Recipe Specific Sysroots

Joshua Lock

(given by Sean Hudson)

130

Recipe Specific Sysroots - Overview

Topics

• Definitions

• Determinism improvements in YP 2.3 +

• Future reproducibility work

131

Recipe Specific Sysroots

• Reproducible

• Repeatable: rerun a build and have it succeed (or fail) in the

same way

• Deterministic: given the same inputs the build system

should produce equivalent outputs

• Binary reproducible: given the same inputs the system

should produce bit-for-bit identical outputs

132

Recipe Specific Sysroots

Reproducibility and Yocto Project

• Repeatability was a founding goal of the Yocto Project
• Not as common place at the time of the project’s inception

• Determinism of the YP build system has improved over

time
• Vast leap forward with most recent, Pyro, release

• Being able to build binary reproducible artefacts is a

goal for future development
• Some concrete tasks planned for 2.4

133

Recipe Specific Sysroots

Binary Reproducible

• Fully deterministic build system, producing bit-for-bit

identical output given the same inputs

• Build environment is recorded or pre-defined

• Mechanism for users to:
• Recreate the environment

• Repeat the build

• Verify the output matches

https://reproducible-builds.org/

https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/

134

Recipe Specific Sysroots

Yocto Project Reproducibility Features

• DL_DIR – shareable cache of downloads

• Easily replicated build environment - configuration in
known locations, printed build header

• Shared state mechanism – reusable intermediary objects
when inputs haven’t changed

• SSTATE_MIRRORS – remotely addressable cache of

• Uninative – static libc implementation for use with native
tools, improves sstate reuse

• Fixed locale – ensures consistent date/time format, sort
order, etc

135

Recipe Specific Sysroots

Topics

• Definitions

• Determinism improvements in YP 2.3 +

• Future reproducibility work

136

Recipe Specific Sysroots

Shared sysroots – a long-standing source of non-

determinism

• Shared sysroot was used by YP build system until

2.3/Pyro release

• Cause of non-determinism, particularly with long-lived

workspaces
• automatic detection of items in the sysroot which weren't explicitly marked as a

dependency

• items which appear lower in common YP build graphs such as libc, kernel or

common native dependencies such as glib-2.0-native

137

Recipe Specific Sysroots

Recipe specific sysroots improve determinism

• per-recipe sysroot which only includes sysroot components of
explicit dependencies

• sysroot artefacts are installed into a component specific
location

• built by hard-linking dependencies files in from their component
trees

• reinstall sysroot content when the task checksum of the
dependency changes

• resolves the issue of autodetected dependencies and implicit
dependencies through build order

138

Recipe Specific Sysroots

Implementations challenges

• Artefacts in the component sysroots can include hard-

coded paths – we need to be able to fix them for installed

location
• The code knows to look at certain common sites for hard-coded paths and can be

taught to fixup in more locations by appending to the EXTRA_STAGING_FIXMES

variable

• A recipe is composed of several tasks to run in the course

of building its output; fetch, unpack, configure, etc.
• Many of these tasks have task-specific dependencies, we need to re-extend the

sysroot when tasks explicitly require items in the sysroot. i.e.

do_package_write_deb need dpkg-native do_fetch for a git repo requires git-native

139

Recipe Specific Sysroots

Implementations challenges (II)

• post-install scriptlets need to be executed for each recipe-

specific sysroot
• We handle this by installing postinst scriptlets into the recipe-specifc sysroot with a

postinst- prefix and running all of the scriptlets as part of the sysroot setup

• Still need to be able to replicate old shared-sysroot

behaviour in certain scenarios, i.e. eSDK
• bitbake build-sysroot recipe target takes everything in the components

directory which matches the current MACHINE and installs it into a shared

sysroot

140

Recipe Specific Sysroots

Adapting to recipe specific sysroots

Would have liked to be pain-free transition, but there is some
conversion required for recipe-specific sysroots.

• fix missing dependencies – commonly native dependencies, i.e.
glib-2.0-native

• SSTATEPOSTINSTFUNCS → SYSROOT_PREPROCESS_FUNCS
• SSTATEPOSTINSTFUNCS are a hook to call specific functions after a recipe is

populated from shared state, commonly used for fixing up paths.

• As shared state objects will now be installed into the recipe-component location,
then linked into the recipe specific sysroot, we need to be able to perform such fixes
in each constructed sysroot.

• SYSROOT_PREPROCESS_FUNCS: is list of functions to run after sysroot
contents are staged and the right place to perform relocation in RSS world

141

Recipe Specific Sysroots

Adapting to recipe specific sysroots (II)

• Add PACKAGE_WRITE_DEPS for any postinsts requiring native tools at

rootfs construction

• YP build system tries to run preinst and postinsts at rootfs construction time,

deferring any which fail to first boot.

• Any special native tool dependencies of pkg_preinst and pkg_postinst must be

explicitly listed in PACKAGE_WRITE_DEPS to ensure they are available on the

build host at rootfs construction time.

142

Recipe Specific Sysroots

Unexpected consequences

• Recipe specific sysroots aggravated an existing source of

non-determinism

• PATH included locations in the host for boot-strapping

purposes

• Host tools were being used, where available, when native

dependencies were missing

143

Recipe Specific Sysroots

Resolved with PATH filtering

• All required host utilities must be explicitly listed

• These are all symlinked into a directory

• PATH is then cleared and set to this filtered location
• HOSTTOOLS: being unavailable causes an early failure (when they can't be linked

in place)

• HOSTTOOLS_NONFATAL: aren't a build failure when absent, i.e. optional tools like

ccache or proxy helpers

144

Recipe Specific Sysroots - Overview

Topics

• Definitions

• Determinism improvements in YP 2.3 +

• Future reproducibility work

145

Recipe Specific Sysroots

Improved build system determinism

Next set our sights on the next level reproducible

definition: binary reproducible builds.

Common issues that affect binary reproducibility

include:

• Compressing files with different levels of parallelism

• Dates, times, and paths embedded in built artefacts

• Timestamps of outputs changing

146

Recipe Specific Sysroots

Future reproducibility work

• Layer fetcher/Workspace setup tool – to improve ease

of build environment replication

• SOURCE_DATE_EPOCH – open spec to ensure

consistent date/time stamps in generated artefacts

• strip-nondeterminism – post-processing step to

forcibly remove traces of non-determinism

• etc...

147

Example Patches for Recipe Specific Sysroots
Juro Bystricky (34):

 license.bbclass: improve reproducibility

 classutils.py: deterministic sorting

 e2fsprogs-doc: binary reproducible

 python3: improve reproducibility

 busybox.inc: improve reproducibility

 image-prelink.bbclass: support binary reproducibility

 kernel.bbclass: improve reproducibility

 image.bbclass: support binary reproducibility

 gmp: improve reproducibility

 python2.7: improve reproducibility

 attr: improve reproducibility

 acl_2.25: improve reproducibility

 zlib_1.2.11.bb: remove build host references

 flex_2.6.0.bb: remove build host references

 bash.inc: improve reproducibility

 package_manager.py: improve reproducibility …
 …

Questions and Answers

Thank you for your

participation!

Appendix: Board Bring-up

151

MinnowBoard Max Turbot SD Card Prep

• Here is how to flash the microSD card for the MBM

• Insert the microSD card into your reader, and attach

that to your host

1. Find the device number for the card (e.g. “/dev/sdc”). For

example run “dmesg | tail” to find the last attached device

2. Unmount any existing partitions from the SD card (for

example “umount /media/<user>/boot”)

3. Flash the image

$ sudo dd if=tmp/deploy/images/intel-corei7-64/core-

image-base-intel-corei7-64.hddimg of=<device_id> bs=1M

4. On the host, right-click and eject the microSD card’s

filesystem so that the image is clean

152

MinnowBoard Max Turbot SD Card Prep

• Note: you can instead use the automatically generated

WIC image

1. Flash the image

$ sudo dd if=scratch/working/build-

mbm/tmp/deploy/images/intel-corei7-64/core-image-base-

intel-corei7-64.wic of=<device_id> bs=1M

2. Note that when the target boots, the WIC version of the

image the kernel boot output does not appear on the serial

console. This means that after 14 seconds of a blank

screen you will then see the login prompt

153

MinnowBoard Max Turbot Board Bring-up
• Setting up the board connections

1. Unpack the target

2. Insert the provided micro-SD card (pin side up)

3. Attach the ethernet cable from the target to the hub

4. Attach the FTDI 6-pin connector. The BLACK wire is on pin 1, which

has an arrow on the silk-mask and is on the center-side of the 6-pin inline

connector near the microSD connector

5. Connect the FTDI USB connector to your host
(Note: the USB serial connection will appear on your host as soon as the FTDI

cable is connected, regardless if the target is powered)

• Start your host’s console for the USB serial console connection

• On Linux, you can use the screen command, using your host’s added

serial device (for example “/dev/ttyUSB0):

• $ screen /dev/ttyUSB0 115200,cs8 (FYI: “CTRL-A k” to kill/quit)

• On Windows, you can use an application like “Teraterm”, set the serial

connection to the latest port (e.g. “COM23”), and set the baud rate to

115200 (“Setup > Serial Port… > Baud Rate…”)

154

MinnowBoard Max Turbot Board Bring-up (2)
• Start the board

1. Connect the +5 Volt power supply to the target

2. You should see the board’s EFI boot information appear in your host’s

serial console

• Run these commands to boot the kernel

Shell> connect -r

Shell> map -r

Shell> fs0:

Shell> bootx64

• You should now see the kernel boot

• At the login prompt, enter “root”

• Note: see the appendix on instructions on how we create the microSD card images

155

Beaglebone Black - Setup

• Create project directory, update local.conf and

bblayers.conf

• Nothing to change in bblayers.conf , beaglebone is

supported in meta-yocto-bsp

155

$ export INSTALL_DIR=`pwd`

$ git clone -b rocko git://git.yoctoproject.org/poky

$ source poky/oe-init-build-env `pwd`/build_beagle

$ echo 'MACHINE = "beaglebone"' >> conf/local.conf

$ echo 'IMAGE_INSTALL_append = " gdbserver openssh"' \

 >> conf/local.conf

$ echo 'EXTRA_IMAGEDEPENDS_append = " gdb-cross-arm"' \

 >> conf/local.conf

$ bitbake core-image-base

156

BeagleBone Black - MicroSD

156

Format blank SD Card for Beaglebone Black

$ export DISK=/dev/sd[c] <<<Use dmesg to find the actual device name

$ sudo umount ${DISK}1 <<<Note the addition of the '1'

$ sudo dd if=/dev/zero of=${DISK} bs=512 count=20

$ sudo sfdisk --in-order --Linux --unit M ${DISK} <<-__EOF__

1,12,0xE,*

,,,-

__EOF__

$ sudo mkfs.vfat -F 16 ${DISK}1 -n boot

$ sudo mkfs.ext4 ${DISK}2 -L rootfs

Now unplug and replug your SD Card for automount

$ cd tmp/deploy/images/beaglebone

$ sudo cp -v MLO-beaglebone /media/guest-mXlApE/BOOT/MLO

$ sudo cp -v u-boot.img /media/guest-mXlApE/BOOT/

$ sudo tar xf core-image-base-beaglebone.tar.bz2 \

 -C /media/guest-mXlApE/rootfs

$ sync (flush to device, not neccesary, but illustrative)

$ umount /media/guest-mXlApE/rootfs /media/guest-mXlApE/boot

157

Dragonboard 410c - Setup

• See this URL to see instructions on how to install Yocto
Project:

https://github.com/Linaro/documentation/blob/master/Refe
rence-Platform/CECommon/OE.md

• To get a serial boot console, you will need to get a
specialized FTDI cable. Here are some sources:

https://www.96boards.org/products/accessories/debug/

• For the slow GPIO bus (at 1.8V), it is recommended to use a
protected and/or voltage shifting shield, for example the new Grove
baseboard for the Dragonboard

157

