
Introduction to Advanced features of
the OpenEmbedded Build System

in the Yocto Project

Behan Webster
behanw@converseincode.com

The Linux Foundation
Mar 05, 20171

Yocto Project/OpenEmbedded
Advanced Course

Yocto Project Dev Day Wifi information

If you want to connect to the Internet:
SSID:

The URL for this presentation

http://bit.ly/2mpHMLu

Yocto Project Overview
➢ Collection of tools and methods enabling

◆ Rapid evaluation of embedded Linux on many popular
off-the-shelf boards

◆ Easy customization of distribution characteristics
➢ Supports x86, ARM, MIPS, Power
➢ Based on technology from the OpenEmbedded Project
➢ Layer architecture allows for

easy re-use of code

4

meta (oe-core)

meta-poky

meta-yocto-bsp

other layers

What is the Yocto Project?
➢ Collaborative Project under Linux Foundation

● Backed by many companies interested in making
Embedded Linux easier for industry

● Split governance model
● Technical Leadership Team
● Advisory Board made up of participating

organizations
➢ Co-maintains OpenEmbedded Core and other tools

(including opkg)

5

Yocto Project Release Versions

6

Name Revision Poky Release Date

Bernard 1.0 5.0 Apr 5, 2011

Edison 1.1 6.0 Oct 17, 2011

Denzil 1.2 7.0 Apr 30, 2012

Danny 1.3 8.0 Oct 24, 2012

Dylan 1.4 9.0 Apr 26, 2013

Dora 1.5 10.0 Oct 19, 2013

Daisy 1.6 11.0 Apr 24, 2014

Dizzy 1.7 12.0 Oct 31, 2014

Fido 1.8 13.0 April 22, 2015

Jethro 2.0 14.0 Oct 31, 2015

Krogoth 2.1 15.0 April 29, 2016

Morty 2.2 16.0 Oct 28, 2016

Pyro 2.3 17.0 April, 2017

Intro to OpenEmbedded
➢ The OpenEmbedded Project co-maintains

OE-core build system:
◆ bitbake build tool and scripts
◆ Metadata and configuration

➢ Provides a central point for new metadata
◆ (see the OE Layer index)

7

➢ Poky is a reference distribution
➢ Poky has its own git repo

◆ git clone git://git.yoctoproject.org/poky

➢ Primary Poky layers
◆ oe-core (poky/meta)
◆ meta-poky (poky/meta-poky)
◆ meta-yocto-bsp

➢ Poky is the starting point for building things
with the Yocto Project

meta (oe-core)

meta-poky

meta-yocto-bsp

Other layers

OK, so what is Poky?

8

Poky in Detail
➢ Contains core components

◆ Bitbake tool: A python-based build engine
◆ Build scripts (infrastructure)
◆ Foundation package recipes (oe-core)
◆ meta-poky (Contains distribution policy)

◆ Reference BSPs
◆ Yocto Project

documentation

Yocto is based on OpenEmbedded-core

10

Metadata describing
approximately 1000 "core"
recipes used for building boot
images. Includes support for
graphics, Qt, networking, kernel
recipes, tools, much more.

Yocto is based on OpenEmbedded-core

11

The Layer Index lists all
known layers and allows
you to search for:
● Specific recipes
● Machine BSP
● Distros

Ties into other tools like
Toaster and the upcoming
setup tool

BUILDING A FULL EMBEDDED
IMAGE WITH YOCTO

This section will introduce the concept of building an initial
system image, which we will be using later...

12

Cheating a Little
➢ Create a yocto directory
$ mkdir $HOME/yocto/
$ cd $HOME/yocto/

➢ Unpack the 2 tarballs which will speed up the build
$ tar xvf downloads.tar
$ tar xvf sstate-cache.tar

➢ This download mirror and SSTATE-CACHE have been
prepared a head of class to make this faster...

13

Getting a copy of Poky
Download the Yocto Project release “Morty”:

~/$ cd yocto
~/yocto$ git clone -b morty git://git.yoctoproject.org/poky.git

14

Setting up a Build Directory
➢ Start by setting up a build directory
$ cd $HOME/yocto/
$ source ./poky/oe-init-build-env build

➢ You need to re-run this script in any new terminal you
start (and don’t forget the project directory)

15

Host System Layout
$HOME/yocto/
 |---build (or whatever name you choose)
 Project build directory
 |---downloads (DL_DIR)

 Downloaded source cache
 |---poky (Do Not Modify anything in here*)
 Poky, bitbake, scripts, oe-core, metadata
 |---sstate-cache (SSTATE_DIR)

 Binary build cache

16

Build directory Layout
$HOME/yocto/build/
|---bitbake.lock
|---cache/ (bitbake cache files)
|---conf/
| |--bblayers.conf (bitbake layers)
| |--local.conf (local configuration)
| `--site.conf (optional site conf)
`---tmp/ (Build artifacts)

17

Note: A few files have been items omitted to facility the presentation on this slide

Using Layers
➢ Layers are added to your build by inserting them into

the BBLAYERS variable within your bblayers file
$HOME/yocto/build/conf/bblayers.conf

BBLAYERS ?= " \
 ${HOME}/yocto/poky/meta \
 ${HOME}/yocto/poky/meta-poky \
 ${HOME}/yocto/poky/meta-yocto-bsp \
 "

18

Update Build Configuration
➢ Configure build by editing local.conf

$HOME/yocto/build/conf/local.conf
◆ Add the following to the bottom of local.conf

MACHINE = "beaglebone"
DL_DIR = "${TOPDIR}/../downloads"
SSTATE_DIR = "${TOPDIR}/../sstate-cache"

➢ Notice how you can use variables in setting these values

19

Building an Embedded Image
➢ This builds an entire embedded Linux distribution
➢ The following builds a minimal embedded target

$ bitbake -k core-image-minimal

➢ On a fast computer the first build may take the better

part of an hour on a slow machine multiple ...
➢ The next time you build it (with no changes) it may

take as little as 5 mins (due to the shared state cache)

20

SD-card installation
➢ Insert your uSD card into your card reader

○ If you don’t know the device which represents your
card reader, ask an instructor

○ likely /dev/mmcblk0 or /dev/sdb

$ cd tmp/deploy/images/beaglebone/
$ sudo dd if=core-image-minimal-beaglebone.wic of=/dev/<YourSDCard> bs=1M
$ eject /dev/<YourSDCard>

 (YourSDCard will be something like /dev/sdc or /dev/mmcblk0)

➢ Connect to the serial and boot.
21

BEAGLEBONE SETUP

This section will show you how to setup your board

22

BeagleBone Walkthrough

23

Cable installation
➢ Plug in your USB-2-Serial with the Black wire

on pin one (marked by a dot closest to 5V)
➢ Plug mini-USB cable into board for power
➢ Plug both USB-A plugs into your computer
➢ Alternately plug the power USB into a phone

charger or power bank

24

Boot from external uSD
➢ Hold down the boot button

○ The button at the USB end of the board
➢ Unplug and replug the mini-USB power
➢ Release the boot button
➢ Until the board is powered down, it will boot

from the external uSD

25

Connect to serial port
➢ There are many serial terminals
➢ We will use screen

$ sudo screen /dev/ttyUSB0 115200

➢ Login to the beaglebone as “root”

26

Board Support packages

This section will introduce the concept of board support
packages

27

Board Support Packages

➢ Documentation
➢ Hardware Features
➢ Configuration Data
➢ Source Patches
➢ Binary files

➢ http://www.yoctoproject.org/docs/current/bsp-guide/bsp-guide.html

28

Board Support Packages (2)

➢ Built as a meta layer
◆ meta-<BSP>

➢ Alternately several BSPs can be in a
container layer
◆ For instance meta-intel

29

Board Support Packages (3)

➢ BSPs can be found in the layer index
➢ BSP can have dependencies
➢ Typically employ bbappend files
➢ The configuration for a BSP is in

meta-mybsp/conf/machine/mybsp.conf
➢ Set MACHINE=mybsp in local.conf

30

Board Support Packages (4)

➢ Yocto project has the yocto-bsp script
for templating new BSPs

$ yocto-bsp list karch
$ yocto-bsp create boardfoo arm

31

The yocto-kernel tool

➢ yocto-kernel <command> [args]
◆ config {add,rm,list}
◆ patch {add,rm,list}
◆ feature {add, rm, list}
◆ features list
◆ feature {describe, create, destroy}

32

Yocto Kernels

This section will introduce the concept of kernel recipes

33

Booting Your Image with QEMU

34

Yocto Project Release Kernel

2.0 linux-yocto-4.1

2.1 linux-yocto-4.4

2.2 linux-yocto-4.8

Yocto Kernel branches

35

http://git.yoctoproject.org/

Config fragments
➢ SRC_URI += smp.cfg

$ cat smp.cfg
CONFIG_SMP=y

36

Default configuration
➢ The default kernel config is called “defconfig”

SRC_URI += defconfig

➢ Search path for relative files in SRC_URI
FILESPATH = "${FILE_DIRNAME}/${PF}:\

${FILE_DIRNAME}/${P}:\
${FILE_DIRNAME}/${PN}: \
${FILE_DIRNAME}/files:${FILE_DIRNAME}"

37

Config fragments
➢ SRC_URI += “file://smp.cfg”

$ cat smp.cfg
CONFIG_SMP=y

38

menuconfig
➢ Used to temporarily change configurations with

devshell and “make menuconfig”
➢ You can now do it with:

“bitbake -c menuconfig linux-yocto”
➢ You must manually copy back the resulting

.config

39

Kernel excercise with menuconfig
➢ Change CONFIG_LOCALVERSION to “-SCaLE15x”

$ cd $HOME/yocto
$ source poky/oe-init-build-env build
$ bitbake -c menuconfig linux-yocto
$ bitbake -C compile linux-yocto
$ bitbake core-image-minimal
➢ Test by reburning your uSD card and trying it in

your BeagleBone with “uname -r”

40

Kernel excercise config fragments
➢ Change CONFIG_LOCALVERSION to “-SCaLE15x”
➢ $ cd $HOME/yocto
➢ $ yocto-layer create mylayer

Please enter the layer priority you'd like to use for the layer: [default: 6]
Would you like to have an example recipe created? (y/n) [default: n]
Would you like to have an example bbappend file created? (y/n) [default: n]

New layer created in meta-mylayer.

Don't forget to add it to your BBLAYERS (for details see meta-mylayer/README).

41

Kernel excercise config fragments (2)
Add layer to ${TOPDIR}/conf/bblayers.conf

/home/<USER>/yocto/meta-mylayer \

yocto$ mkdir -p \
 meta-mylayer/recipes-kernel/linux

42

Kernel excercise config fragments (2)
$ cd meta-mylayer/recipes-kernel/linux
$ echo ‘CONFIG_LOCALVERSION=“-SCaLE15x”’ \

> localversion.cfg

Create “linux-yocto_4.8.bbappend” containing:
FILESEXTRAPATHS_prepend := "${THISDIR}:"
SRC_URI += "file://localversion.cfg"

43

Kernel excercise with menuconfig
$ bitbake -c clean linux-yocto
$ bitbake core-image-minimal

➢ Test by reburning your uSD card and trying it in
your BeagleBone

uname -r
4.8.12-SCaLE15x

44

wic

This section will introduce the concept of kernel recipes

45

What is wic?
➢ wic uses kickstart files to describe the

partition layout and the filesystems used
➢ Much simpler than defining your own

IMAGE_FSTYPES
➢ This is an example .wks file:

46

And Example .wks file
short-description: Create SD card image with a boot partition
long-description: Creates a partitioned SD card image. Boot files
are located in the first vfat partition.

part /boot --source bootimg-partition --ondisk mmcblk --fstype=vfat \
--label boot --active --align 4 --size 16

part / --source rootfs --ondisk mmcblk --fstype=ext4 --label root --align 4

47

Running wic
$ wic create -o OUTPUTFILE \

-e core-image-minimal sdimage-bootpart

➢ Wic can also be run in “raw mode” outside of
OpenEmbedded

48

devtool

This section will introduce devtool

49

devtool
➢ Devtool automates your work flow
$ devtool add https://github.com/msgpack/msgpack-c.git;tag=cpp-2.1.1

$ devtool edit-recipe msgpack-c
$ devtool build msgpack-c
$ devtool build-image -p msgpack-c core-image-minimal
$ devtool deploy-target msgpack-c beaglebone
$ devtool undeploy-target msgpack-c beaglebone
$ devtool finish msgpack-c meta-mylayer

You can learn more from the yocto documentation:
4.3.1.1. Use devtool add to Add an Application

50

Alternate devtool workflow
$ devtool search <pkgname> or
http://layers.openembedded.org
$ devtool modify -x <pkgname> <sourcepath-to-extract-to>
Apply patches to the sources
Commit changes to VCS (git)
$ devtool build <pkgname>
$ devtool build-image <imagename>
$ devtool update-recipe <pkgname>
$ devtool finish <pkgname> <layername>

51

http://layers.openembedded.org

eSDK

This section will introduce the extensible Software
Development Kit

52

Building the eSDK
➢ You can build the eSDK like this:

$ bitbake -c populate_sdk_ext core-image-minimal

➢ You can build the old SDK like this:

$ bitbake -c populate_sdk core-image-minimal

53

Building the eSDK
➢ You can build the eSDK like this:

$ bitbake -c populate_sdk_ext core-image-minimal

➢ You can build the old SDK like this:

$ bitbake -c populate_sdk core-image-minimal

54

Installing the eSDK

$ cd tmp/deploy/sdk
$ source ./poky-glibc-x86_64-core-image-minimal-\

cortexa8hf-neon-toolchain-ext-2.2.1.sh

➢ Which installs the eSDK in $HOME/poky_sdk/

55

Licensing and SPDX

This section will show off the Licensing mechanism in
OpenEmbedded

56

Simple licensing
LICENSE = "licname1 licname2"
LIC_FILES_CHECKSUM = "file://COPYING;md5=xxxx \

file://licfile.txt;beginline=5;endline=29;md5=yyyy \
file://src/module.h;endline=45;md5=zzzz \
file://../license.html;md5=aaaa \
..."

● tmp/deploy/images/beaglebone/\
core-image-minimal-beaglebone.manifest

57

Simple licensing
LICENSE_FLAGS = "commercial"
LICENSE_FLAGS = "license_${PN}_${PV}

LICENSE_FILE_WHITELIST = "commercial_gst-plugins-ugly"
LICENSE_FILE_WHITELIST = "commercial"

58

SPDX
● Can auto detect the license
● Defines a comprehensive XML format for encoding licenses

in a machine readable way
● The ability to verify that licensing is compatible
● Interim step of simple common headers in all files.
● https://spdx.org/

59

60

It’s not an Embedded
Linux Distribution

It Creates a
Custom One For You

Embedded Linux Development with Yocto Project
Training from The Linux Foundation

Want to learn how to use Yocto Project like a Pro?
https://training.linuxfoundation.org/

Embedded Linux Platform Development with Yocto Project
http://bit.ly/eldyocto

https://training.linuxfoundation.org/
http://bit.ly/eldyocto

TIPS HINTS AND OTHER RESOURCES

The following slides contain reference material that will
help you climb the Yocto Project learning curve

62

Common Gotchas When Getting Started
➢ Working behind a network proxy? Please follow this guide:

− https://wiki.yoctoproject.org/wiki/Working_Behind_a_
Network_Proxy

➢ Do not try to re-use the same shell environment when
moving between copies of the build system

➢ oe-init-build-env script appends to your $PATH, it's
results are cumulative and can cause unpredictable build
errors

➢ Do not try to share sstate-cache between hosts running
different Linux distros even if they say it works

63

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Project Resources
➢ The Yocto Project is an open source project, and aims to deliver an

open standard for the embedded Linux community and industry
➢ Development is done in the open through public mailing lists:

openembedded-core@lists.openembedded.org,
poky@yoctoproject.org, and yocto@yoctoproject.org

➢ And public code repositories:
➢ http://git.yoctoproject.org and
➢ http://git.openembedded.org
➢ Bug reports and feature requests
➢ http://bugzilla.yoctoproject.org

64

mailto:yocto@yoctoproject.org
http://git.yoctoproject.org/
http://git.openembedded.org/
http://bugzilla.yoctoproject.org/

Tip: ack-grep
➢ Much faster than grep for the relevant use

cases
➢ Designed for code search
➢ Searches only relevant files

◆ Knows about many types: C, asm, perl
◆ By default, skips .git, .svn, etc.
◆ Can be taught arbitrary types

➢ Perfect for searching metadata
65

Tip: ack-grep

66

alias bback='ack-grep --type bitbake'

TIP: VIM Syntax Highlighting
➢ https://github.com/openembedded/bitbake/tree/master/contrib/vim

➢ Install files from the above repo in ~/.vim/

➢ Add "syntax on" in ~/.vimrc

$ tree ~/.vim/
/Users/chris/.vim/
├── ftdetect
│ └── bitbake.vim
├── ftplugin
│ └── bitbake.vim
├── plugin
│ └── newbb.vim
└── syntax
 └── bitbake.vim

67

https://github.com/openembedded/bitbake/tree/master/contrib/vim

TIP: VIM Syntax Highlighting

68

