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My Experience

● PCB/Schematic Design

● Das U-boot

● uClinux-dist

● Linux Kernel Drivers

● Open Source Tools

● Yocto Project Tools: poky, bitbake, etc.



  

Talk Based on Dora Version

Ian Gampon
https://creativecommons.org/licenses/by/2.0/

● Still using autobuilder
from June 2014

● Technical debt due to
priorities

● Bug fixes have been
backported



  

Build and Release Management
Why Autobuilder?

Complex code requires continuous integration

● Many opportunities for mistakes

– local.conf

– Multiple layers

– .bbappend’s

You need official, clean builds of your source



  

Yocto Project’s Autobuilder

● Buildbot adapted for use with the poky/oe-core

● Layer Retrieval

● Buildsteps for
– Configuration files

– Bitbake targets

– Publishing artifacts



  

autobuilder.yoctoproject.org



  

Controller and Workers

autobuilder.yoctoproject.org

● One Controller commands Nine Workers

Our smaller scale project has 1:1

www.buildbot.net



  

What is a job
[nightly-fsl-arm]

builders: 'example-worker'

repos: [{'poky':

            {'repourl':'git://git.yoctoproject.org/poky',

             'layerversion':{'core':'meta', 'yoctobsp':'meta-yocto-bsp', 'yocto':'meta-yocto',
'poky':'meta-poky'},

             'branch':'master'}},

 <SNIP>

steps: [{'SetDest':{}},

        {'CheckOutLayers': {}},

        {'RunPreamble': {}},

        {'GetDistroVersion' : {'distro': 'poky'}},

        {'CreateAutoConf': {'machine': 'imx53qsb', 'SDKMACHINE' : 'x86_64',

 <SNIP>

        {'BuildImages': {'images': 'core-image-sato core-image-sato-dev core-image-sato-sdk core-
image-minimal core-image-minimal-dev'}},

scheduler: [scheduler: [{'nightly-scheduler' :

                {'type':'Nightly', 'hour':'2', 'minute':'0',}}]

reposrepos

buildstepsbuildsteps

titletitle

schedulerscheduler



  

autobuilder.yoctoproject.org
buildset-config.qa

nightly-arm.conf nightly-world.conf nightly-qa-pam.conf

nightly-deb.conf nightly-x32.conf nightly-qa-skeleton.conf

nightly-ipk.conf nightly-x86.conf nightly-qa-systemd.conf

nightly-rpm.conf poky-tiny.conf nightly-qa-targetbuilds.conf

nightly-multilib.conf nightly-x86-64.conf buildtools.conf

nightly-oe-build-perf-
test.conf

nightly-qa-distro.conf eclipse-plugin-neon.conf

nightly-oe-selftest.conf nightly-qa-extras.conf

nightly-oecore.conf nightly-qa-logrotate.conf

images qa Build tools

23 example jobs on the official



  

Our Jobs

Create your own jobs based on source tree examples

● Nightly
– Populate recipe downloads

● Qemux86
– Sanity check

● Product image - master

● Product image - stable

● Project RPM Build



  

Repos: Combining Upstream and
Local Layers

poky

meta-fsl-arm

V1.0 V1.1 V1.2

meta-syntech

20170210-1 20170215-1 20170221-1

dora-10.0.1

1.5



  

Job Example - “repos:”

● Upstream Layers (low delta)
– Maintainers tie revisions to poky releases
{'meta-fsl-arm':
  {'repourl':
    'git://github.com/Freescale/meta-fsl-arm.git',
    'hash': 'af392c22bf6b563525ede4a81b6755ff1dd2c1c6' }},

● In-house Layers (high delta)
{'meta-syntech':
  {'repourl':'git://tux1/git/meta-syntech.git',
   'branch':'master'}}



  

Layer Checkout Scripts for
Developers

● Developer Script
– Matches repo section of autobuilder job

– Clones fixed upstream and local HEAD

● Release Script
– Saves SRCREV of local and upstream repos

– Tracked in source control for reproducibility



  

Custom Buildstep:
ReleaseSyntech.py

Automates release activities

● Convert SRCREV from PublishLayerTarballs to
Release Script

● Perform Release actions on local layer copies in builds
– Create git tags (like v1.0) for reference

– Commit release script

– Image version bump (within recipe)

● Release Manager pushes repo’s if autobuilder artifacts
are accepted



  

Using TEMPLATECONF for Build
Configuration

● First step “. oe-init-build-env” pulls default bblayers.conf
and local.conf

● Control local.conf and bblayers.conf in source control

● From dir poky:

TEMPLATECONF=../meta-syntech-bsp/conf . oe-
init-build-env

● From layer specified in TEMPLATECONF:
– local.conf.sample → build/conf/local.conf

– bblayers.conf.sample → build/conf/bblayers.conf



  

TEMPLATECONF: 
Buildstep: RunPreamble

● RunPreamble
– Calls . oe-init-build-env

● RunPreambleSyntech
– Customizes by adding TEMPLATECONF

– There is a new altcmd in RunPreamble (post dora)

● Note: auto.conf allows autobuilder specific
config
– Comes before settings in local.conf



  

PublishArtifacts.py

Bulk of the code is for the official autobuilder
for artifact in self.artifacts:

...

    if artifact == "adt-installer":

...

    elif "eclipse-plugin" in artifact:

...

else:

        command += self.generateMD5cmd(artifact,
deploy_image_dir)

        if "beagle" in artifact:



  

PublishArtifactsSyntech.py

● Much of the Yocto code is N/A to our needs

● Deploys everything in deploy/images by default
– core-image-sato-mx6sabresd.ext3 →

core-image-sato-mx6sabresd-20170217152000.ext3

● For release, we only use a subset of the build artifacts
– U-boot binary

– Device tree

– Linux Kernel

– Specific File System Image



  

Buildstep Coding Tips
Mapping Config to Buildsteps

● Code Path from Environment to Python
– config/autobuilder.conf

– autobuilder/buildset.py (converts ENV to python)

– buildsteps/SomeAction.py

● yocto-autobuilder-setup matches many
searches, but it’s all placeholders



  

Buildstep Coding Tips
The Shell Code Within

● Typical buildstep shell code
command = “cd “ + self.workdir + “;”

command += “cp * “ + self.output + “;”

● Output is viewable on autobuilder buildstep logs

● Example output (off the browser screen):
cd /home/jate/yocto-autobuilder/yocto-worker/example ; cp *



  

Buildstep Coding Tips
The Shell Code Within

● Add carriage returns for readability
command = “cd “ + self.workdir + “\n”

command += “cp * “ + self.output + “\n”

● Improved output:
cd /home/jate/yocto-autobuilder/yocto-worker/example

cp * /tmp/yab/output



  

Speed Builds by Populating
Premirrors with Yocto Autobuilder

● Pre-Mirror sstate_cache/downloads treated as read-only
by developer builds

● Developer builds symlink to premirror first

● autobuilder.conf: Tell YAB to use premirror
SSTATE_CACHE and DL_DIR

● Autobuilder jobs will populate the pre-mirrors

YAB Developer
Builds

Pre-Mirrors



  

Autobuilder Maintenance
Disk Space

● Cronjob to clean
* 6 * * * clean.sh

find /tmp/publish/machine -maxdepth 1 -type d
-ctime +5d -exec rm -rf {} \;

● Cleaning of sstate-cache
sstate-cache-management.sh

● Protip: Windows does not support symbolic
links, and makes full copies



  

Configuration Storage

Store your configuration in the autobuilder git tree

● buildset-config.syntech

● controller.cfg
– Web GUI accounts

● autobuilder.conf
– Environment variables



  

Nightly Image Builds Were Too Infrequent

● Added git-poller Scheduler (backported 4 commits)

● auto.conf hack: Change recipe to pull from the master
of its SRC_URI

{‘CreateAutoConf’:{…

 ‘atextappend’: ...

‘SRCREV_pn-recipe = “${AUTOREV}”\n’

‘PV_append_pn-recipe = “+git${SRCPV}”\n’

(Bitbake order of variable flags)

Tips & Tricks
Trigger Build Off Project GIT



  

Tips & Tricks
buildhistory

● Buildhistory bbclass outputs build data to a git
repository
– File name, sizes, modes

– Package Data

● Add a tag for comparison between versions



  

Future Tasks
Deal With External Layer Outages

● External Layer Repositories
– github.com/Freescale

– git.freescale.com

– git.yoctoproject.org

● Network Problems
– Attack on DNS github.com

– Local IT Issues



  

Future Tasks
Mirror for External Layers

● config/autobuilder.conf
– OGIT_MIRROR_DIR

● ResolveLayers.py, Buildset.py
– Did not support mirrors

● CheckOutLayers
– {'CheckOutLayers': {'clobberOnFailure': True}}

● Updates, but hacked _fetch function to allow git fetch failure

● Work In Progress
– Method = fresh, mode = full?

– Need to populate the mirror directory



  

Future Tasks
Combine “repos:” and checkout scripts

● Avoid errors converting between the two

● Simple conversion between “repo:” section and
checkout script

● Utilize bitbake or buildbot yoctogit libraries



  

Future Tasks
PR Service

● Autobuilder ideal as the source for package
feeds

● Run the service bitbake-prserv

● Specify PRSERV_HOST in auto.conf

● Back up database using
– bitbake-prserver-tool export



  

Future Tasks
Automated Runtime Testing

● Mega Manual Section: Performing Automated
Runtime Testing

● Runs QA tests like Yocto Project’s Autobuilder
Does

● Dora: Python code executes commands on a
QEMU instance

● Newer releases allow you to run on target
hardware



  

Thank You

Questions?
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