

Using the Yocto Autobuilder for Build
and Release Management

Jate Sujjavanich
Syntech Systems, Inc

<jatedev -at- gmail.com>
February 22, 2016

My Experience

● PCB/Schematic Design

● Das U-boot

● uClinux-dist

● Linux Kernel Drivers

● Open Source Tools

● Yocto Project Tools: poky, bitbake, etc.

Talk Based on Dora Version

Ian Gampon
https://creativecommons.org/licenses/by/2.0/

● Still using autobuilder
from June 2014

● Technical debt due to
priorities

● Bug fixes have been
backported

Build and Release Management
Why Autobuilder?

Complex code requires continuous integration

● Many opportunities for mistakes

– local.conf

– Multiple layers

– .bbappend’s

You need official, clean builds of your source

Yocto Project’s Autobuilder

● Buildbot adapted for use with the poky/oe-core

● Layer Retrieval

● Buildsteps for
– Configuration files

– Bitbake targets

– Publishing artifacts

autobuilder.yoctoproject.org

Controller and Workers

autobuilder.yoctoproject.org

● One Controller commands Nine Workers

Our smaller scale project has 1:1

www.buildbot.net

What is a job
[nightly-fsl-arm]

builders: 'example-worker'

repos: [{'poky':

 {'repourl':'git://git.yoctoproject.org/poky',

 'layerversion':{'core':'meta', 'yoctobsp':'meta-yocto-bsp', 'yocto':'meta-yocto',
'poky':'meta-poky'},

 'branch':'master'}},

 <SNIP>

steps: [{'SetDest':{}},

 {'CheckOutLayers': {}},

 {'RunPreamble': {}},

 {'GetDistroVersion' : {'distro': 'poky'}},

 {'CreateAutoConf': {'machine': 'imx53qsb', 'SDKMACHINE' : 'x86_64',

 <SNIP>

 {'BuildImages': {'images': 'core-image-sato core-image-sato-dev core-image-sato-sdk core-
image-minimal core-image-minimal-dev'}},

scheduler: [scheduler: [{'nightly-scheduler' :

 {'type':'Nightly', 'hour':'2', 'minute':'0',}}]

reposrepos

buildstepsbuildsteps

titletitle

schedulerscheduler

autobuilder.yoctoproject.org
buildset-config.qa

nightly-arm.conf nightly-world.conf nightly-qa-pam.conf

nightly-deb.conf nightly-x32.conf nightly-qa-skeleton.conf

nightly-ipk.conf nightly-x86.conf nightly-qa-systemd.conf

nightly-rpm.conf poky-tiny.conf nightly-qa-targetbuilds.conf

nightly-multilib.conf nightly-x86-64.conf buildtools.conf

nightly-oe-build-perf-
test.conf

nightly-qa-distro.conf eclipse-plugin-neon.conf

nightly-oe-selftest.conf nightly-qa-extras.conf

nightly-oecore.conf nightly-qa-logrotate.conf

images qa Build tools

23 example jobs on the official

Our Jobs

Create your own jobs based on source tree examples

● Nightly
– Populate recipe downloads

● Qemux86
– Sanity check

● Product image - master

● Product image - stable

● Project RPM Build

Repos: Combining Upstream and
Local Layers

poky

meta-fsl-arm

V1.0 V1.1 V1.2

meta-syntech

20170210-1 20170215-1 20170221-1

dora-10.0.1

1.5

Job Example - “repos:”

● Upstream Layers (low delta)
– Maintainers tie revisions to poky releases
{'meta-fsl-arm':
 {'repourl':
 'git://github.com/Freescale/meta-fsl-arm.git',
 'hash': 'af392c22bf6b563525ede4a81b6755ff1dd2c1c6' }},

● In-house Layers (high delta)
{'meta-syntech':
 {'repourl':'git://tux1/git/meta-syntech.git',
 'branch':'master'}}

Layer Checkout Scripts for
Developers

● Developer Script
– Matches repo section of autobuilder job

– Clones fixed upstream and local HEAD

● Release Script
– Saves SRCREV of local and upstream repos

– Tracked in source control for reproducibility

Custom Buildstep:
ReleaseSyntech.py

Automates release activities

● Convert SRCREV from PublishLayerTarballs to
Release Script

● Perform Release actions on local layer copies in builds
– Create git tags (like v1.0) for reference

– Commit release script

– Image version bump (within recipe)

● Release Manager pushes repo’s if autobuilder artifacts
are accepted

Using TEMPLATECONF for Build
Configuration

● First step “. oe-init-build-env” pulls default bblayers.conf
and local.conf

● Control local.conf and bblayers.conf in source control

● From dir poky:

TEMPLATECONF=../meta-syntech-bsp/conf . oe-
init-build-env

● From layer specified in TEMPLATECONF:
– local.conf.sample → build/conf/local.conf

– bblayers.conf.sample → build/conf/bblayers.conf

TEMPLATECONF:
Buildstep: RunPreamble

● RunPreamble
– Calls . oe-init-build-env

● RunPreambleSyntech
– Customizes by adding TEMPLATECONF

– There is a new altcmd in RunPreamble (post dora)

● Note: auto.conf allows autobuilder specific
config
– Comes before settings in local.conf

PublishArtifacts.py

Bulk of the code is for the official autobuilder
for artifact in self.artifacts:

...

 if artifact == "adt-installer":

...

 elif "eclipse-plugin" in artifact:

...

else:

 command += self.generateMD5cmd(artifact,
deploy_image_dir)

 if "beagle" in artifact:

PublishArtifactsSyntech.py

● Much of the Yocto code is N/A to our needs

● Deploys everything in deploy/images by default
– core-image-sato-mx6sabresd.ext3 →

core-image-sato-mx6sabresd-20170217152000.ext3

● For release, we only use a subset of the build artifacts
– U-boot binary

– Device tree

– Linux Kernel

– Specific File System Image

Buildstep Coding Tips
Mapping Config to Buildsteps

● Code Path from Environment to Python
– config/autobuilder.conf

– autobuilder/buildset.py (converts ENV to python)

– buildsteps/SomeAction.py

● yocto-autobuilder-setup matches many
searches, but it’s all placeholders

Buildstep Coding Tips
The Shell Code Within

● Typical buildstep shell code
command = “cd “ + self.workdir + “;”

command += “cp * “ + self.output + “;”

● Output is viewable on autobuilder buildstep logs

● Example output (off the browser screen):
cd /home/jate/yocto-autobuilder/yocto-worker/example ; cp *

Buildstep Coding Tips
The Shell Code Within

● Add carriage returns for readability
command = “cd “ + self.workdir + “\n”

command += “cp * “ + self.output + “\n”

● Improved output:
cd /home/jate/yocto-autobuilder/yocto-worker/example

cp * /tmp/yab/output

Speed Builds by Populating
Premirrors with Yocto Autobuilder

● Pre-Mirror sstate_cache/downloads treated as read-only
by developer builds

● Developer builds symlink to premirror first

● autobuilder.conf: Tell YAB to use premirror
SSTATE_CACHE and DL_DIR

● Autobuilder jobs will populate the pre-mirrors

YAB Developer
Builds

Pre-Mirrors

Autobuilder Maintenance
Disk Space

● Cronjob to clean
* 6 * * * clean.sh

find /tmp/publish/machine -maxdepth 1 -type d
-ctime +5d -exec rm -rf {} \;

● Cleaning of sstate-cache
sstate-cache-management.sh

● Protip: Windows does not support symbolic
links, and makes full copies

Configuration Storage

Store your configuration in the autobuilder git tree

● buildset-config.syntech

● controller.cfg
– Web GUI accounts

● autobuilder.conf
– Environment variables

Nightly Image Builds Were Too Infrequent

● Added git-poller Scheduler (backported 4 commits)

● auto.conf hack: Change recipe to pull from the master
of its SRC_URI

{‘CreateAutoConf’:{…

 ‘atextappend’: ...

‘SRCREV_pn-recipe = “${AUTOREV}”\n’

‘PV_append_pn-recipe = “+git${SRCPV}”\n’

(Bitbake order of variable flags)

Tips & Tricks
Trigger Build Off Project GIT

Tips & Tricks
buildhistory

● Buildhistory bbclass outputs build data to a git
repository
– File name, sizes, modes

– Package Data

● Add a tag for comparison between versions

Future Tasks
Deal With External Layer Outages

● External Layer Repositories
– github.com/Freescale

– git.freescale.com

– git.yoctoproject.org

● Network Problems
– Attack on DNS github.com

– Local IT Issues

Future Tasks
Mirror for External Layers

● config/autobuilder.conf
– OGIT_MIRROR_DIR

● ResolveLayers.py, Buildset.py
– Did not support mirrors

● CheckOutLayers
– {'CheckOutLayers': {'clobberOnFailure': True}}

● Updates, but hacked _fetch function to allow git fetch failure

● Work In Progress
– Method = fresh, mode = full?

– Need to populate the mirror directory

Future Tasks
Combine “repos:” and checkout scripts

● Avoid errors converting between the two

● Simple conversion between “repo:” section and
checkout script

● Utilize bitbake or buildbot yoctogit libraries

Future Tasks
PR Service

● Autobuilder ideal as the source for package
feeds

● Run the service bitbake-prserv

● Specify PRSERV_HOST in auto.conf

● Back up database using
– bitbake-prserver-tool export

Future Tasks
Automated Runtime Testing

● Mega Manual Section: Performing Automated
Runtime Testing

● Runs QA tests like Yocto Project’s Autobuilder
Does

● Dora: Python code executes commands on a
QEMU instance

● Newer releases allow you to run on target
hardware

Thank You

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

