
Advanced Lab

Henry Bruce, Brian Avery, David Reyna, Belen Barros

Pena, Khem Raj, Mark Hatle, Bruce Ashfield

 Yocto Project Developer Day 

San Diego  7 April 2016

2

Agenda – The Advanced Class

 8:30- 9:00 Opening Session

 9:00- 9:45 Henry - New workflows: Toaster, CROPS and devtool

 9:45-10:15 Brian - Deep dive presentation and demo on CROPS

10:15-10:30 Morning Break

10:30-10:45 Pass out class accounts

10:45-11:30 David - Deep dive and class exercises on devtool

11:30-12:00 David - Mirrors and SState Pitfalls and Practices

12:00- 1:00 Lunch

 1:00- 1:45 Belen - Deep dive on Toaster and related topics

 1:45- 2:15 Khem - poky-tiny

 2:15- 2:30 Afternoon Break

 2:30- 4:00 Mark - Deep dive on PRServer, User/Group creation

 4:00- 4:30 Bruce - Kernel

 4:30- 5:00 Q and A

3

Notes for the Advanced Class:

• The class will be given with YP-2.0 (Jethro) , on

qemuarm (Toaster will use a special latest branch)

• Slides: http://devday.yocto.link/

• Wifi Access:

• SSID: Marriott_CONFERENCE

• Password: linux1991

• Your IP access addresses

• SSH:

• ssh ilab01@devday-a.yocto.io -p 10000(+your

session number)

• HTTP:
http://devday-a.yocto.io:30000(+your session number)

Activity One

New workflows with Toaster, CROPS and devtool

 Henry Bruce

Activity Two

CROPS Deep Dive and Demo

Brian Avery

Activity Three

Class Account and Project Setup

7

Yocto Project Dev Day Lab Setup

• You will be given information on how to log into your personal

virtual host.

• The virtual host’s resources can be found here:

• Your Projects: "/scratch/working“

• Toaster Install: "/scratch/master-toaster/poky“

• Extensible-SDK Install: "/scratch/sdk“

• Sources: "/scratch/src“

• Yocto Project: "/scratch/yocto/poky"

• Downloads: "/scratch/downloads"

• Sstate-cache: "/scratch/sstate-cache"

• You will be using SSH to communicate with your virtual server.

• You may want to change the default password after you log on,

in case someone accidently uses the same account address as

yours.

8

Build your class QEMUARM project

$ cd /scratch/working

$ source ../yocto/poky/oe-init-build-env build-qemuarm

append to local.conf:

$ vi conf/local.conf

MACHINE = "qemuarm"

SSTATE_DIR = "/scratch/sstate-cache"

DL_DIR = "/scratch/downloads"

IMAGE_INSTALL_append = " gdbserver openssh libstdc++"

EXTRA_IMAGEDEPENDS_append = " gdb-cross-arm"

INHIBIT_PACKAGE_STRIP_pn-linux-yocto = "1"

PRSERV_HOST = "localhost:0 "

IMAGE_GEN_DEBUGFS = "1"

$ bitbake core-image-base

since we have provided the sstate-cache, this should

only take a few minutes.

Activity Four

Devtool and Extensible SDKs

David Reyna

10

Devtool - A tool for the application developer

Before devtool, developer teams writing new applications had the
following options:

1) Use build engineer’s setup & write new recipe & use bitbake to rebuild
image

Drawbacks:

 push changes to repo each iteration

 Long build times for image rebuilds

2) Use build engineer provided sdk/toolchain

Drawbacks:

 Difficult to update the sdk if app is library or depends on lib in
development - may require multiple sdk updates per day

 Doesn’t work for testing distro changes (like systemd-related work)

 Can’t easily create/test the updated package as built by build engineer

3) Use externalsrc to work in own sandbox, building with recipes

Drawbacks:

 Difficult to get all the details right UNTIL devtool

11

devtool - Baking in a sandbox

Class will cover these usecases for devtool

• Setup using an extensible SDK

• Development cycle with a new recipe

• Create a recipe from a source tree, then we will build,

deploy, edit, build, and deploy

• Development cycle with existing recipe

• Extract recipe and source, the edit, build, and deploy

• Update the sdk with changes

12

devtool - subcommands
Beginning work on a recipe:
 add Add a new recipe

 modify Modify the source for an existing recipe

 upgrade Upgrade an existing recipe

Getting information:
 status Show workspace status

 search Search available recipes

Working on a recipe in the workspace:
 build Build a recipe

 edit-recipe Edit a recipe file in your workspace

 configure-help Get help on configure script options

 update-recipe Apply changes from external source tree to recipe

 reset Remove a recipe from your workspace

Testing changes on target:
 deploy-target Deploy recipe output files to live target machine

 undeploy-target Undeploy recipe output files in live target

 build-image Build image including workspace recipe packages

Advanced:
 create-workspace Set up workspace in an alternative location

 extract Extract the source for an existing recipe

 sync Synchronize the source tree for an existing recipe

13

Devtool – Creating an Extensible SDK

• Include an SSH client on the target to enable the devtool
deploy function, with either

EXTRA_IMAGE_FEATURES = "ssh-server-dropbear"

… or …
IMAGE_INSTALL_append = " openssh“

• Built the Extensible SDK:

$ bitbake core-image-minimal -c populate_sdk_ext
$ cp tmp/deploy/sdk/poky-glibc-x86_64-core-image-
base-armv5e-toolchain-ext-2.0.1.sh /scratch/sdk

• The above steps have been done for you. We just
need to extract the SDK:

$ cd /scratch/sdk
$./poky-glibc-x86_64-core-image-base-armv5e-

toolchain-ext-2.0.1.sh -d `pwd`

14

Devtool – Preparing the Extensible SDK

• In clean shell, source both the class environment and the
devtool build environment

 $ cd /scratch/sdk
 $ source environment-setup-armv5e-poky-linux-gnueabi

• Note that we have a kernel, but not a rootfs (we will need both
for QEMU)

$ ls tmp/deploy/images/qemuarm/*qemuarm.ext4
$

• Use devtool to build one

$ devtool build-image core-image-base

• Now the rootfs is there:

$ ls tmp/deploy/images/qemuarm/*qemuarm.ext4
tmp/deploy/images/qemuarm/core-image-base-qemuarm.ext4
$

15

devtool Development Cycle

• 1. Add application to workspace:

devtool add [--version xxx] myapp /path/to/source

• 2. Build it:

devtool build myapp

• 3. Write to target device (w/network access):

devtool deploy-target myapp root@ipaddr

• 4. Edit source code & repeat steps 2-3 as necessary

16

Devtool - hooking your application into the build

• Run the devtool ‘add recipe-name /path/to/source’

 $ devtool add --version 1.0 bballs /scratch/src/bballs

• Generates a minimal recipe in the arm-sdk/workspace layer

• Adds EXTERNALSRC in an arm-sdk/workspace/appends

bbappend file that points to the source

• Note: this does not add your image to the original

build engineer’s image, which requires changing the

platform project’s conf/local.conf

IMAGE_INSTALL_append = " bballs"

17

After the add
Build files in the sdk directory

sdk> ls –FC

buildtools/

cache/

conf/

downloads/

environment-setup-armv5e-poky-

linux-gnueabi

layers/

preparing_build_system.log

site-config-armv5e-poky-linux-

gnueabi

sstate-cache/

sysroots/

tmp/

version-armv5e-poky-linux-gnueabi

workspace/

Workspace layer layout

sdk> tree workspace

.

├── appends

│ └── bballs_1.0.bbappend

├── conf

│ └── layer.conf

├── README

└── recipes

 └── bballs

 └── bballs_1.0.bb

4 directories, 4 files

18

Devtool - edit recipe

Edit the new workspace recipe
$ vi workspace/recipes/bballs/bballs_1.0.bb

do_install () {

 # NOTE: unable to determine what to put here

 # - there is a Makefile but no target named

 # "install", so you will need to define this

 # yourself

- :

+ install -d ${D}${bindir}

+ install -m 0755 bballs ${D}${bindir}

 }

19

Devtool -build/deploy/run app

• Build the app
$ devtool build bballs

• Deploy the output (the target’s ip address may change)

$ devtool deploy-target -s bballs root@192.168.7.2

NOTE: the ‘-s’ option will note any ssh keygen issues, allowing you to

(for example) add this IP address to the known hosts table

• Run app on target
/usr/bin/bballs

20

Devtool - iterate

• Iterate …

• edit source file to instantiate more balls

$ vi /scratch/src/bballs/b_main.cpp

-int num_hard = 2;

-int num_soft = 2;

-int num_spin = 2;

+int num_hard = 5;

+int num_soft = 5;

+int num_spin = 5;

• …rebuild, redploy, retest, more stuff bouncing

 $ devtool build bballs

 $ devtool deploy-target bballs root@192.168.7.2

21

devtool - sandbox-to-repo

• You can use ‘modify’ and ‘update-recipe’ to work with

source in your sandbox, and update the sdk/git-repo

recipe as a patch/srcrev

• devtool modify -x ... : extract source from for a recipe in

a layer, into your sandbox

• iterate: modify source in sandbox, build , deploy, test

• devtool update-recipe... create a patch to the sdk or

commit to the source git repo

22

devtool modify: Extract source and modify

• NOTE: If you do not have git configured for your host, preset some values

now

$ git config --global user.email JoeSmith@nowhere.com

$ git config --global user.name "Joe Smith"

• Run the devtool command to extract src and setup sandbox

$ devtool modify -x which /scratch/src/which

• Modify the package in your sandbox
$ vi /scratch/src/which/which.c

 - print_usage(stdout);

 + printf("hello class\n");

• On host, rebuild the package and deploy it
$ devtool build which

$ devtool deploy-target which root@192.168.7.2

• On target, demonstrate the change
which --help

Hello class

mailto:dummyemail@nowhere.com

23

devtool update-recipe : Push changes back to
sdk/repo layers

• In your sandbox, commit the change for the tip of the rev
$ cd /scratch/src/which

$ git add which.c

$ git commit -m "changes for class"

• Update-recipe to modify the recipe in the sdk, keeping existing
patches
$ devtool update-recipe -n which

• verify that the extensible sdk has been changed

 $ grep changes-for-class $(find /scratch/sdk -name
"which*bb")

which_2.2.1.bb file://0001-changes-for-class.patch

$ find /scratch/sdk -name 0001-changes-for-class.patch

... recipes-extended/which/which/0001-changes-for...

• If you reset the recipe, extract ‘which’ again, you will see the
change (but extract to new location)

file://0001-changes-for-class.patch
file://0001-changes-for-class.patch
file://0001-changes-for-class.patch
file://0001-changes-for-class.patch
file://0001-changes-for-class.patch
file://0001-changes-for-class.patch
file://0001-changes-for-class.patch

24

devtool - A few more commands

• We’ve shown usage for sub-commands add, modify, build,
deploy-target (implicitly undeploy-target), runqemu

• devtool status: shows status of workspace

$ devtool status
bballs: /scratch/src/bballs
which: /scratch/src/which

• devtool package <recipe>: creates installable packages for a
recipe
$ devtool package bballs

...

NOTE: Your packages are in /scratch/sdk/tmp/deploy/rpm
$ cd tmp/deploy/rpm/armv5e

$ ls *bball*

bballs-1.0-r0.armv5e.rpm

bballs-dev-1.0-r0.armv5e.rpm

bballs-dbg-1.0-r0.armv5e.rpm
$

25

Devtool - A few more commands

• devtool reset <recipe>: removes a recipe from the

workspace, but not the source tree

• devtool extract <recipe> <dest-src-tree>: extracts a

recipe’s source files to a source tree, but not into

workspace, and not ready for building

• devtool search: broad regex search into package

data, including recipe DESCIPTION so less useful for

packages with names like ‘which’

26

Yocto devtool - References

1. Yocto devtool documentation

http://www.yoctoproject.org/docs/latest/dev-manual/dev-

manual.html#using-devtool-in-your-workflow

2. Tool Author Paul Eggleton’s ELC Presentation:

http://events.linuxfoundation.org/sites/events/files/slides/yocto_

project_dev_workflow_elc_2015_0.pdf

3. Trevor Woerner’s Tutorial
https://drive.google.com/file/d/0B3KGzY5fW7laQmgxVXVTSD

JHeFU/view?usp=sharing

Activity Five

Mirrors and SState

David Reyna

28

Mirrors and Pre-Mirrors

• MIRRORS specifies additional paths from which the build system gets

source code. When the build system searches for source code, it first

tries the local download directory. If that location fails, the build system

tries locations defined by PREMIRRORS, the upstream source, and then

locations specified by MIRRORS in that order.

• PREMIRROR is a set of rules applied to URIs prior to fetching. The rules

are composed of an RE followed by a substitution rule.

• BB_ALLOWED_NETWORKS specifies a space-delimited list of hosts

that the fetcher is allowed to use to obtain the required source code,

with limited RE support, for example:

 BB_ALLOWED_NETWORKS = "*.gnu.org"

• BB_NO_NETWORK disables network access in the BitBake fetcher

modules. With this access disabled, any command that attempts to

access the network becomes an error.

29

Uses for pre-mirrors

• No Network Access

• When you need to completely lock out external content, either for security reasons

or code contamination reasons, you can use BB_NO_NETWORKS.

• Limited Network Access

• When you want to allow only certain network paths, internal and/or

external, for example to manage development repositories, you can use

BB_ALLOWED_NETWORKS.

• Managed and Redirected Network Access

• When you want to allow substitutions of networks when and if they are

available, for example to access internal repositories when in the factory

and then public repositories when in the field, you can use PREMIRROR.

• Protocol Swaps

• When you want to substitute potentially blocked repository ports with un-

blocked ports, for example swap git access for HTTP access, using the

RE features of PREMIRROR.

30

How PREMIRROR RE substitution works

• The URL parser decodes an URL into tokens, specifically “scheme”,

“network location”, “path”, “user”, “password”, and “parameters”

• The parser will then match the set of PREMIRROR’s rules with the URL on

a per token basis.

• The parser will then repeat PREMIRROR’s rules matching on this new set

of URLs. This repeats until no more matches are found.

• The result will be a list of the original URLs together with all of the

recursive matches.

• Example of a complex rule:

 git://.*/.*/(.*) https://${CORP_MIRRORS}/gadget/oe-core-dl-1.8/${CORP-MIRRORS-

SHOW-BRANCH}:downloads/\1

31

Infinite PREMIRROR Loop Example

• The bad news is this facility can lead to infinite loops that

can overrun python and even your disk. The good news is this

has been fixed in Yocto Project 2.0. The bad news is that it could

still happen to you.

• Example Rules:

 git://.*/.* http://A/A_

 http://.*/.* http://B/B_

• Let us begin (without fix in 2.0):

 git://a.b.com/foo.git -> http://A/A_foo.git

 http://A/A_foo.git -> http://B/B_A_foo.git

 http://B/B_A_foo.git -> http://B/B/B_B_A_foo.git

 (loop!)

32

PREMIRROR Advice

• Design your rules so that a conversion rule does not match itself. Here

is an example of a set of rules that explicitly blocks self-matching after

the first substitution:

git://.*/.*/(.*) https://${CORP_MIRRORS}/gadget/oe-core-dl-

1.8/${CORP_MIRRORS_SHOW_BRANCH}:downloads/\1

https://^(?!${CORP_MIRRORS}).*/.*

https://${CORP_MIRRORS}/gadget/oe-core-dl-

1.8/${CORP_MIRRORS_SHOW_BRANCH}:/

• However, with that said, there still can be implicit loops, such that one

rule will run over the results of a previous rule.

• And of course it's the sum of PREMIRRORS, <regular>, MIRRORS in the

download order. The more rules you put in, the bigger the table, the

more matching attempts may be processed before a non-match.

33

PREMIRROR

• There is a regression test under “bitbake/lib/bb/tests” that is run to see

if the distribution as the issue.

• Here is that test’s output. It does show that the recursion is fixed.

Surprisingly, it also showed an extra conversion that was not expected!

recmirrorvar = "https://.*/[^/]* http://AAAA/A/A/A/ \n" \

 "https://.*/[^/]* https://BBBB/B/B/B/ \n"

def test_recursive(self):

 fetcher = bb.fetch.FetchData("https://downloads.yoctoproject.org/releases/bi

tbake/bitbake-1.0.tar.g$

 mirrors = bb.fetch2.mirror_from_string(self.recmirrorvar)

 uris, uds = bb.fetch2.build_mirroruris(fetcher, mirrors, self.d)

 self.assertEqual(uris, ['http://AAAA/A/A/A/bitbake/bitbake-1.0.tar.gz',

 'https://BBBB/B/B/B/bitbake/bitbake-1.0.tar.gz',

34

Sstate and Downloads

• SSTATE

• Each build has a sstate-cache directory that collects the generated

packages. The build will look in this directory first to avoid

unnecessary rebuilding of otherwise unchanged packages

• In the name of each cached file contains a checksum string, known

as the signature. The signature is a calculated sum of identifying

dependence artifacts that track if the package source has changed.

When the calculated sum matches a cached sum, the cached

content is reused, else the package is re-built (and ends up with a

new checksum)

• Downloads

• Each build also has a download directory, where all source

packages that are not local are copied and placed

• For the download directory, uniqueness is determined by the

source package's name, which normally have version information

35

Sstate and Downloads: Sharing and Portability

• The sstate and download directories can be shared between

projects, allowing the work of one project save time for the other

projects. This is done by setting the SSTATE_DIR and the

DL_DIR values in each project to common external directories.

• The sstate and download directories can be shared across

networks, for example across an NFS mount.

• The sstate and download directories are portable, meaning that it

can be copied from one machine to another.

• The sstate-cache is access-rights safe between users. The

bitbake required umask of 022 insures that all such files are

readable by all other users.

36

Sstate: Mirrors

• What we learned about Mirrors can apply Sstate

• SSTATE_MIRRORS

• Configures the build system to search other mirror locations for prebuilt

cache data objects before building out the data. This variable works like

fetcher MIRRORS and PREMIRRORS and points to the cache locations to

check for the shared objects.

• SSTATE_MIRROR_ALLOW_NETWORK

• If set to "1", allows fetches from mirrors that are specified in

SSTATE_MIRRORS to work even when fetching from the network has

been disabled by setting BB_NO_NETWORK to "1". Using the

SSTATE_MIRROR_ALLOW_NETWORK variable is useful if you have set

SSTATE_MIRRORS to point to an internal server for your shared state

cache, but you want to disable any other fetching from the network.

37

Sstate: recommendations

• In complex systems it is recommended to separate sstate directories,

for example native and non-native sstate directories, and also different

BSPs and arches.

• Reusing a single directory will grow very large very quickly. Use atime

to delete old files. Note: this requires the filesystem mounted with

atime/relatime which we normally recommend to disable for build

performance.

 find ${sstate_dir} -name 'sstate*' -atime +3 -delete; fi

• Rebuild sstate to new directory periodically and delete old sstate dir to

maintain bounded size. There may be packages or package versions

that are no longer used and just take up space.

• Although it is possible to use other protocols for the sstate such as

HTTP and FTP, you should avoid these. Using HTTP limits the sstate to

read-only and FTP provides poor performance.

• Additionally, a missing sstate file on http/ftp server cause wget to hang

for a long time due to the retries and timeout

38

 Sstate: Known issues
• A new changeset may invalidate part or all of the sstate cache

occasionally - this is by design

• Native package’s sstate-cache can’t be reused among 32-bit and 64-bit

host

• Native sstate dependent on glibc version and native sstate compiled

with newer glibc version cannot be used on systems with older glibc

• The calculated signatures are not always perfect. For example, if a

recipe copies files directly into its install directory and those files are

not otherwise registered in the FILES directive, any file changes will be

invisible to the signature, and even though the package builds the

image will be populated by the original sstate version

• Users with different PR Servers can cause package extra-version

incrementing that is inconsistent, resulting in false wins

• Never the less, the sstate-cache feature will save you a tremendous

amount of time, and it has proven to be very stable. Use it!

39

 Debugging Sstate Issues
• There are two important tools to help debug sstate issues

 Build History: tells you ‘what’ changed

 bitbake-diffsigs: helps you figure out the 'why‘

• Build History

• The buildhistory class exists to help you maintain the quality of your build

output. You can use the class to highlight unexpected and possibly

unwanted changes in the build output. When you enable build history, it

records information about the contents of each package and image and

then commits that information to a local Git repository where you can

examine the information.

• bitbake-diffsigs

• This tool is a BitBake task signature data comparison utility

• You can use this tool to check any changes between sstate cache and

new produced one.

40

 Debugging Sstate Issues

• Build History

• Enabling: build history is disabled by default. To enable it, add the following at the

end of your conf/local.conf file:

 INHERIT += "buildhistory“

 BUILDHISTORY_COMMIT = "1“

• The build history information is kept in BUILDHISTORY_DIR , generally equal to

“${TOPDIR}/buildhistory”

• The directory tracks build information into image, packages, and SDK

subdirectories.

• bitbake-diffsigs

• The usage is:
 bitbake-diffsigs -t recipename taskname

 bitbake-diffsigs sigdatafile1 sigdatafile2

 bitbake-diffsigs sigdatafile1

• The signature files are in the stamps directory, for example:
 tmp/stamps/armv5e-poky-linux-gnueabi/busybox/*sig*

http://www.yoctoproject.org/docs/latest/ref-manual/ref-manual.html#var-TOPDIR

Activity Six

Lunch!

Activity Seven

Toaster Deep Dive

Belen Barros Pena

43

Toaster: It’s Magic!

Activity Eight

Poky-tiny

Khem Raj

Activity Nine

PR Service

Mark Hatle

46

Advanced Topic: PR Service
Introduction

• Package Managers install/upgrade using:

• PKGN-PKGE:PKGV-PKGR

• PKGN – Package Name

• PKGE – Package Epoch

• PKGV – Package Version

• PKGR – Package Revision

• Example:

• bash-3.2-r0.armv5l.rpm

• bash-3.2-r1.armv5l.rpm

47

Advanced Topic: PR Service
Introduction

• PKGN set by recipe author

• Default to PN which defaults to recipe filename

• PKGV set by recipe author

• Default to PV which defaults to recipe filename

• Changes to match upstream community

• PKGE only used when the PV ‘scheme’ changes

• PKGR numbers can be manually updated

• Based in part on PR

• Error prone – easy to forget to update

• What happens when a rebuild was due to dependency

change? (PR doesn’t change)

48

Advanced Topic: PR Service
PR Numbers

• PR Server

• The build system knows when a package is going to be built

• It also knows the unique signature of the package steps and

dependencies – as well as the PN and PE:PV.

• This is everything we need to know if the PR should

increment

• Enable with this option:

 # add to conf/local.conf:

 PRSERV_HOST = "localhost:0"

49

Advanced Topic: PR Service
PR Numbers

• PR Service uses the PN-PE:PV-PR, package arch and

signature to determine the PR value to return

• Server is a network service

• XML RPC API:

• getPR(version, pkgarch, checksum), quit, ping,

export(version=None, pkgarch=None, checksum=None,

colinfo=True), importone(version, pkgarch, checksum, value)

• Values stored in an sqlite DB

• Table: PRMAIN_nohist

• Columns: version, pkgarch, checksum, value

50

Advanced Topic: PR Service
PR Numbers

• Effectively what happens is the system sends to the
server (getPR) ${PN}-${EXTENDPE}${PV}-${PR},

${PACKAGE_ARCH}, ${BB_TASKHASH}

• PR Server matches each of these and returns the

value if known.

• If unknown it matches what it can and assigns the

next integer value for that name/version and stores

that value for the future and returns the value.

• See package.bbclass: python package_get_auto_pr()

51

Advanced Topic: PR Service
PR Numbers

• As implemented, values from the PR service are

included into the PR field as an addition of the form

".X" so r0 becomes r0.1, r0.2 and so on.

• This allows existing PR values to be used for

whatever reasons allowing manual PR bumps should

it be necessary.

• As of Yocto Project 1.7 -- PR numbers are no longer

updated in recipes. Existing PR numbers are only

removed on a PV change.

52

Advanced Topic: PR Service
PR Numbers

• How does bitbake handle this?

meta/conf/bitbake.conf

PF = "${PN}-${EXTENDPE}${PV}-${PR}"

EXTENDPE = "${@['','${PE}_’]” \

 "[int(d.getVar('PE', True) or 0) > 0]}"

PKGV ?= "${PV}"

PKGR ?= "${PR}${EXTENDPRAUTO}"

PKGE ?= "${@['','${PE}'][int(d.getVar('PE', True) or 0) > 0]}"

PRAUTOINX = "${PF}”

EXTENDPRAUTO = "${@['.${PRAUTO}','’]" \

 "[d.getVar('PRAUTO', True) is None]}”

53

Advanced Topic: PR Service
PR Numbers and sstate-cache

• PR information is not maintained as part of the sstate

packages.

• If you maintain a sstate feed, it’s expected that either

you run builders contributing to the sstate feed with a

shared PR service, or you don't run a shared feed!

• A shared feed without a PR service will lead to

problems!

• Bad, Possibly no re-use of binary packages

• Worse, re-use of binary packages with names that don’t

match expected

• Even worse, PR numbers do not increase

54

Advanced Topic: PR Service
Exercises

• -exercise-

• Manually inspect the PR server database

• sqlite <db>

• Start a PR service multiple builders can use

• Show a shared sstate w/o a PR server

• Show a shared sstate w/ a PR server

Activity Ten

Users and Groups

Mark Hatle

56

Advanced Topic: Users and Groups
base-passwd

• It all starts with:

• meta/recipes-core/base-passwd/base-passwd_3.5.29.bb

• Based on the debian base-passwd package

• Includes passwd.master and group.master

• update-passwd utility

• Differences:

• Change default shell to /bin/sh

• Input user

• Shutdown user

57

Advanced Topic: Users and Groups
base-passwd

• When the base-passwd package installs it installs the

passwd.master and group.master files into /usr/share

• Post install script “update-passwd” runs.

• update-passwd (8):

• handles updates of /etc/passwd, /etc/shadow and

• /etc/group on running Debian systems. It compares the

• current files to master copies … and updates all

• entries in the global system range (that is, 0-99).

• On a new system it copies the master files as the

starting point.

58

Advanced Topic: Users and Groups
password policy

• The Debian policy guide specifies the following:

• 0-99: Globally allocated ids (distribution specific)

• 100-999: Dynamically allocated system ids. These ids are

specific to each system install.

• 1000-59999: Dynamically allocated user accounts

• 60000-64999: Globally allocated static ids (special purpose)

• 65000-65533: Reserved

• 65534: User ‘nobody’.

• 65535: (uid_t)(-1) == (gid_t)(-1) may not be used

See (9.2):

https://www.debian.org/doc/debian-policy/ch-opersys.html

59

Advanced Topic: Users and Groups
base-passwd

• base-passwd should only contain distribution specific

globally allocated static ids

• To define additional uid/gid specific to your

distribution, create a .bbappend and patch the

passwd.master/group.master file

• This ensures that upgrading the package will work

properly

60

Advanced Topic: Users and Groups
base-passwd

• -exercise-

• Create .bbappend for base-passwd

61

Advanced Topic: Users and Groups
useradd.bbclass

• This class is responsible for adding dynamic uid/gid

to the system.

• Inherits common functions from useradd_base

• perform_groupadd(), perform_useradd(),

perform_groupmems(), perform_groupdel(),

perform_userdel(), perform_groupmod(), perform_usermod()

• Class adds “preinstall” scripts to recipes

(USERADD_PACKAGES)

• useradd_preinst via pkg_preinst_<package>

62

Advanced Topic: Users and Groups
useradd.bbclass

• Special Variables

• USERADD_PACKAGES (specifies packages w/ params)

• GROUPADD_PARAM

• USERADD_PARAM

• GROUPMEMS_PARAM

• Each of these takes the same parameters as if the

user called groupadd, useradd, or groupmems by

itself.

• See groupadd(8), useradd(8), groupmems(8)

63

Advanced Topic: Users and Groups
Recipes

• Recipes, generally you want recipes to dynamically

generated users/groups (security)

• In the case where software requires a static uid/gid

one can be added using standard arguments (see

policy)

• Example:

inherit useradd

USERADD_PACKAGES = "${PN}"

GROUPADD_PARAM_${PN} = "--system shutdown"

USERADD_PARAM_${PN} = "--create-home \

 --groups video,tty,audio,input,shutdown,disk \

 --user-group xuser"

64

Advanced Topic: Users and Groups
pseudo/fakeroot

• When building recipes, or images ‘pseudo’ intercepts

calls to emulate a root like environment

• ‘pseudo’ has the ability to also emulate users and

groups settings

• The sysroot gets a passwd/group file installed which

assists

• bitbake –c devshell allows you to inspect values

65

Advanced Topic: Users and Groups
Recipes

• -exercise-

• Add a new recipe w/ customer user/group

• Show package pre-install script

• Show how adding it to an image adjusts the passwd/group

• Inspect with bitbake –c devshell (vs outside)

66

Advanced Topic: Users and Groups
Images

• Often you want image or system specific

users/groups.

• extrausers.bbclass implements this feature

INHERIT += "extrausers”

EXTRA_USERS_PARAMS = "\

 useradd -p '' tester; \

 groupadd developers; \

 userdel nobody; \

 groupdel -g video; \

 groupmod -g 1020 developers; \

 usermod -s /bin/sh tester; \

 "

67

Advanced Topic: Users and Groups
Images

• -exercise-

• Rebuild image with custom project/image specific

user/group

68

Advanced Topic: Users and Groups
Problems with dynamically generated users/groups

• Problem: Multiple images end up with different

passwd/group values

• Each installation will contain slightly different

passwd/group configurations

• Generally not a problem

• Shared filesystems or reproducible images (image level

upgrades) need consistent values

69

Advanced Topic: Users and Groups
useradd-staticids.bbclass

• Solution: useradd-staticids.bbclass

• Can be included in the project local.conf, or

distribution.conf – depending on how you want to

define the values.

• The class rewrites values:

• GROUPADD_PARAM

• USERADD_PARAM

• GROUPMEMS_PARAM

• Values are then hard coded into the packages

70

Advanced Topic: Users and Groups
useradd-staticids.bbclass

• See update_useradd_static_config(d) function

• The user defines USERADD_UID_TABLES and

USERADD_GID_TABLES. One or more entries (full

path or search the ‘bbpath’).

• Format of the file is traditional passwd or group files

• Note: password fields are IGNORED. Packages should

never have hardcoded passwords in them. (Including

hashed passwords.)

• Multiple files, earlier entries are overwritten

• ‘Blank’ values use previously defined or recipe values

71

Advanced Topic: Users and Groups
useradd-staticids.bbclass

• update_useradd_static_config() function

• Read the USERADD_*_TABLEs.

• Parse the values of *_PARAM.

• The entries set the default values.

• The table entry is loaded based on user or group name

• Write a new *_PARAM using the combine entries.

This ensures that the specific passwd/group entry will

be generated as defined… but still left to be dynamic

and only installed when the package is.

72

Advanced Topic: Users and Groups
useradd-staticids.bbclass

• Easiest way to generate the file is to build a full image

and start with the generated passwd/group files

• Tailor them as necessary to define the basic settings

• Pass them back in via the USERADD_*_TABLE variables

• It’s a good idea to split up the file into recipe

components if appropriate

• Can make layer management easier

73

Advanced Topic: Users and Groups
useradd-staticids.bbclass

• USERADD_ERROR_DYNAMIC = ‘1’

• Trigger a failure if the system encounters a user or

group that has not been defined in a

USERADD_*_TABLE.

74

Advanced Topic: Users and Groups
useradd-staticids

• -exercise-

• Generate base file (start with previous image)

• Modify the uid/gid and put it in your local layer, set TABLES

• Rebuild image and inspect

• Enable the no dynamic ids mode (add a pkg w/ dynamic id)

• Add to another uid/gid and show the error

Activity Eleven

Advanced Kernel Topics

Bruce Ashfield

Questions and Answers

Thank you for your

participation!

Bonus Activity Twelve

Tune Files - Toolchain Flags

(CFLAGS, LDFLAGS, ASFLAGS, etc)

Mark Hatle

79

Advanced Topic: Tunings and Toolchain Flags
The environment

• When building a recipe the environment is configured

with a series of special environment variables:

• AS, AR, CC, CPP, CXX, LD, CCLD, …

• CPPFLAGS – C Pre-Processor flags

• CFLAGS – C Compiler flags

• CXXFLAGS – C++ Compiler flags

• LDFLAGS – Linker flags

• Flags are defined by the build system, recipes, or the

software being compiled.

80

Advanced Topic: Tunings and Toolchain Flags
The environment: Tools

• Defined in meta/conf/bitbake.conf, controlled by

overrides and bbclasses.

CC = "${CCACHE}${HOST_PREFIX}gcc ${HOST_CC_ARCH}${TOOLCHAIN_OPTIONS}”

CXX = "${CCACHE}${HOST_PREFIX}g++ ${HOST_CC_ARCH}${TOOLCHAIN_OPTIONS}”

CPP = "${HOST_PREFIX}gcc -E${TOOLCHAIN_OPTIONS} ${HOST_CC_ARCH}”

LD = "${HOST_PREFIX}ld${TOOLCHAIN_OPTIONS} ${HOST_LD_ARCH}”

CCLD = "${CC}”

AR = "${HOST_PREFIX}ar”

AS = "${HOST_PREFIX}as ${HOST_AS_ARCH}”

TOOLCHAIN_OPTIONS = " --sysroot=${STAGING_DIR_TARGET}”

HOST_CC_ARCH = "${TARGET_CC_ARCH}"

HOST_LD_ARCH = "${TARGET_LD_ARCH}"

HOST_AS_ARCH = "${TARGET_AS_ARCH}"

81

Advanced Topic: Tunings and Toolchain Flags
The environment: Tools

TARGET_CC_ARCH = "${TUNE_CCARGS}"

TARGET_LD_ARCH = "${TUNE_LDARGS}"

TARGET_AS_ARCH = "${TUNE_ASARGS}”

• TUNE_*ARGS is the required arguments to produce

binaries with the right ABI, instruction set and

instruction optimization

• Defines the minimum requires arguments for the tool

• Does NOT contain general optimizations

• Based on ‘TUNE_FEATURES’, which are arch specific

82

Advanced Topic: Tunings and Toolchain Flags
Tune Files

• Tune files are located in meta/conf/machine/include

• See README for more details

• Selected by MACHINE .conf file and DEFAULTTUNE

 DEFAULTTUNE ?= "core2-64"

require conf/machine/include/tune-core2.inc

83

Advanced Topic: Tunings and Toolchain Flags
Tune Files

tune-core2.inc

Include the previous tune to pull in PACKAGE_EXTRA_ARCHS

require conf/machine/include/tune-i586.inc

Extra tune features

TUNEVALID[core2] = "Enable core2 specific processor optimizations"

TUNE_CCARGS .= "${@bb.utils.contains("TUNE_FEATURES", "core2",

 " -march=core2 -mtune=core2 -msse3 -mfpmath=sse", "", d)}"

AVAILTUNES += "core2-64"

TUNE_FEATURES_tune-core2-64 = "${TUNE_FEATURES_tune-x86-64} core2"

BASE_LIB_tune-core2-64 = "lib64"

TUNE_PKGARCH_tune-core2-64 = "core2-64"

PACKAGE_EXTRA_ARCHS_tune-core2-64 = \

 "${PACKAGE_EXTRA_ARCHS_tune-x86-64} core2-64"

84

Advanced Topic: Tunings and Toolchain Flags
Tune Files

tune-i586.inc

require conf/machine/include/x86/arch-x86.inc

tune-x86.inc

ELF64 ABI

TUNEVALID[m64] = "IA32e (x86_64) ELF64 standard ABI"

TUNECONFLICTS[m64] = "m32 mx32"

TUNE_ARCH .= "${@bb.utils.contains("TUNE_FEATURES", "m64", \

 ”x86-64", "" ,d)}"

TUNE_CCARGS .= "${@bb.utils.contains("TUNE_FEATURES", "m64", \

 " -m64", "", d)}”

AVAILTUNES += "x86-64"

TUNE_FEATURES_tune-x86-64 = "m64"

BASE_LIB_tune-x86-64 = "lib64"

TUNE_PKGARCH_tune-x86-64 = "x86_64"

PACKAGE_EXTRA_ARCHS_tune-x86-64 = "${TUNE_PKGARCH_tune-x86-64}"

85

Advanced Topic: Tunings and Toolchain Flags
The environment: Flags

• Defined in meta/conf/bitbake.conf

CPPFLAGS = "${TARGET_CPPFLAGS}”

TARGET_CPPFLAGS = ""

CFLAGS = "${TARGET_CFLAGS}”

TARGET_CFLAGS = "${TARGET_CPPFLAGS} ${SELECTED_OPTIMIZATION}"

CXXFLAGS = "${TARGET_CXXFLAGS}”

TARGET_CXXFLAGS = "${TARGET_CFLAGS}"

LDFLAGS = "${TARGET_LDFLAGS}”

TARGET_LDFLAGS = "-Wl,-O1 ${TARGET_LINK_HASH_STYLE}"

86

Advanced Topic: Tunings and Toolchain Flags
The environment: Flags

• Defined in meta/conf/bitbake.conf

• DEBUG_BUILD switches behavior

SELECTED_OPTIMIZATION = "${@d.getVar(['FULL_OPTIMIZATION',

 'DEBUG_OPTIMIZATION'][d.getVar('DEBUG_BUILD', True)

 == '1'], True)}”

FULL_OPTIMIZATION = "-O2 -pipe ${DEBUG_FLAGS}"

DEBUG_OPTIMIZATION = "-O -fno-omit-frame-pointer ${DEBUG_FLAGS} -pipe"

DEBUG_FLAGS ?= "-g -feliminate-unused-debug-types"

87

Advanced Topic: Tunings and Toolchain Flags
The environment: Flags

• Linux kernel recipe

• Kernel ignores all userspace CFLAGS and arguments

• If they are needed, a special KERNEL_CC or

KERNEL_LD is required.

meta/recipes-kernel/linux/linux-yocto.inc:

KERNEL_CC_append_aarch64 = " ${TOOLCHAIN_OPTIONS}"

KERNEL_LD_append_aarch64 = " ${TOOLCHAIN_OPTIONS}"

88

Advanced Topic: Tunings and Toolchain Flags
Exercise

• -exercise-

• Change the MACHINE 'defaulttune' watch the change

(bitbake –e)

• Adjust the DEBUG_BUILD value (bitbake –e)

• Adjust DEBUG FLAGS, and/or the optimizations

• Generate an SDK, see how the settings expand into

the SDK

Appendix

Board Setup Quick Start

90

Beaglebone Black - Setup

• Create project directory, update local.conf and

bblayers.conf

• Nothing to change in bblayers.conf, beaglebone is

supported in meta-yocto-bsp

90

$ export INSTALL_DIR=`pwd`

$ git clone -b jethro git://git.yoctoproject.org/poky

$ source poky/oe-init-build-env `pwd`/build_beagle

$ echo 'MACHINE = "beaglebone"' >> conf/local.conf

$ echo 'IMAGE_INSTALL_append = " gdbserver openssh"' \

 >> conf/local.conf

$ echo 'EXTRA_IMAGEDEPENDS_append = " gdb-cross-arm"' \

 >> conf/local.conf

$ bitbake core-image-base

91

BeagleBone Black - MicroSD

91

Format blank SD Card for Beaglebone Black

$ export DISK=/dev/sd[c] <<<Use dmesg to find the actual device name

$ sudo umount ${DISK}1 <<<Note the addition of the '1'

$ sudo dd if=/dev/zero of=${DISK} bs=512 count=20

$ sudo sfdisk --in-order --Linux --unit M ${DISK} <<-__EOF__

1,12,0xE,*

,,,-

__EOF__

$ sudo mkfs.vfat -F 16 ${DISK}1 -n boot

$ sudo mkfs.ext4 ${DISK}2 -L rootfs

Now unplug and replug your SD Card for automount

$ cd tmp/deploy/images/beaglebone

$ sudo cp -v MLO-beaglebone /media/guest-mXlApE/BOOT/MLO

$ sudo cp -v u-boot.img /media/guest-mXlApE/BOOT/

$ sudo tar xf core-image-base-beaglebone.tar.bz2 \

 -C /media/guest-mXlApE/rootfs

$ sync (flush to device, not neccesary, but illustrative)

$ umount /media/guest-mXlApE/rootfs /media/guest-mXlApE/boot

92

BeagleBone Black: GPIO Layout

P9

1

45

Note: GPIO_20 at least is not actually free

93

Schematic: Beaglebone Black LED and Button

P9-4 +3.3 V

P9-12 Key

P9-42 LED

P9-46 GND

220 ohm

4.7K

220 ohm

220 ohm=red,red,brown 4.7K=yellow,violet,orange

94

Sample Breadboard Layout: Beaglebone Black

P9-4

+3.3 V

P9-12

Key
P9-42

LED

P9-46

GND

220 ohm=red,red,brown 4.7K=yellow,violet,orange

220 Ohm

4.7K Ohm

4.7K Ohm

95

Minnowboard Turbot/Max - Setup

• Create project directory, update local.conf

• The Minnowboard Turbot and Max use the same BSP

95

$ export INSTALL_DIR=`pwd`

$ git clone -b jethro git://git.yoctoproject.org/poky

$ git clone -b jethro git://git.yoctoproject.org/meta-intel

$ source poky/oe-init-build-env `pwd`/build_minnow

$ echo 'BBLAYERS += "$INSTALL_DIR/meta-intel"' >> conf/bblayers.conf

$ echo 'MACHINE = "intel-corei7-64"' >> conf/local.conf

$ echo 'IMAGE_INSTALL_append = " gdbserver openssh"' \

 >> conf/local.conf

$ echo 'EXTRA_IMAGEDEPENDS_append = " gdb-cross-x86_64"' \

 >> conf/local.conf

$ bitbake core-image-base

96

Minnowboard Turbot/Max - MicroSD

• To build a brand new microSD or USB Flash drive

image:

• Get the .hddimg from your build:
$ cp tmp/deploy/images/intel-corei7-64/core-image-minimal-intel-corei7-

64.hddimg .

• Insert your microSD or USB flash drive:

$ umount /media/boot

 $ dd if=core-image-base-intel-corei7-64.hddimg of=/dev/sd(n)

<<<replace with proper dev

96

97

Minnowboard Turbot/Max - Bootup

• Booting the board

• Insert the new MicroSD card

Shell> connect -r

Shell> map -r

Shell> fs0:

Shell> bootx64

• That should get you to a Linux login prompt

97

98

Minnowboard Max: GPIO Layout

• http://www.elinux.org/Minnowboard:MinnowMax#Low_Speed_Expan

sion_.28Top.29
 Power Connector

Note: The pins 21, 23, and 25 are the free GPIO pins.

99

Schematic: Minnowboard Max LED and Button

JP1-4 +3.3V

JP1-25 Key

JP1-21 LED

JP1-2 GND

220 ohm

4.7K

FJN3302R

Transistor

With bias

Resistors

(10K,10K)

4.7K

220 ohm

220 ohm=red,red,brown 4.7K=yellow,violet,orange

1

2

3

1 2 3

100

Sample Breadboard Layout: Minnowboard Max

JP1-4

+3.3 V

JP1-25

Key
JP1-21

LED

JP1-2

GND

220 ohm=red,red,brown 4.7K=yellow,violet,orange

220 Ohm

4.7K Ohm

4.7K Ohm

Jumper

220 Ohm

FJN3302R

Jumper

101

Dragonboard 410c - Setup

• The Dragon Board is new to Yocto Project. See this URL to
see instructions on how to install Jethro.

https://github.com/96boards/documentation/wiki/Dragonboard-410c-
OpenEmbedded-and-Yocto

• To get a serial boot console, you will need to get a
specialized FTDI cable. Here are some sources:

https://www.96boards.org/products/accessories/debug/

• For the slow GPIO bus (at 1.8V), it is recommended to use a
protected and/or voltage shifting shield, for example the new Grove
baseboard for the Dragonboard

101

