
Tom Zanussi, Intel Corporation <tom.zanussi@intel.com>
Richard Purdie, Linux Foundation

<richard.purdie@linuxfoundation.org>

by Tom Zanussi and Richard Purdie
Copyright © 2010-2014 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales [http://creativecommons.org/licenses/by-nc-
sa/2.0/uk/] as published by Creative Commons.

Note
For the latest version of this manual associated with this Yocto Project release, see the Yocto Project
Board Support Package (BSP) Developer's Guide [http://www.yoctoproject.org/docs/1.6.1/bsp-guide/bsp-
guide.html] from the Yocto Project website.

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://www.yoctoproject.org/docs/1.6.1/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.6.1/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.6.1/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.6.1/bsp-guide/bsp-guide.html

iii

Table of Contents
1. Board Support Packages (BSP) - Developer's Guide .. 1

1.1. BSP Layers ... 1
1.2. Example Filesystem Layout ... 2

1.2.1. License Files .. 3
1.2.2. README File .. 3
1.2.3. README.sources File .. 3
1.2.4. Pre-built User Binaries .. 3
1.2.5. Layer Configuration File ... 4
1.2.6. Hardware Configuration Options ... 4
1.2.7. Miscellaneous BSP-Specific Recipe Files .. 5
1.2.8. Display Support Files .. 5
1.2.9. Linux Kernel Configuration ... 6

1.3. Requirements and Recommendations for Released BSPs .. 8
1.3.1. Released BSP Requirements ... 8
1.3.2. Released BSP Recommendations .. 9

1.4. Customizing a Recipe for a BSP .. 10
1.5. BSP Licensing Considerations .. 10
1.6. Using the Yocto Project's BSP Tools .. 11

1.6.1. Common Features .. 11
1.6.2. Creating a new BSP Layer Using the yocto-bsp Script 13
1.6.3. Managing Kernel Patches and Config Items with yocto-kernel 15

1

Chapter 1. Board Support Packages
(BSP) - Developer's Guide
A Board Support Package (BSP) is a collection of information that defines how to support a particular
hardware device, set of devices, or hardware platform. The BSP includes information about the
hardware features present on the device and kernel configuration information along with any
additional hardware drivers required. The BSP also lists any additional software components required
in addition to a generic Linux software stack for both essential and optional platform features.

This guide presents information about BSP Layers, defines a structure for components so that BSPs
follow a commonly understood layout, discusses how to customize a recipe for a BSP, addresses BSP
licensing, and provides information that shows you how to create and manage a BSP Layer using two
Yocto Project BSP Tools.

1.1. BSP Layers
The BSP consists of a file structure inside a base directory. Collectively, you can think of the base
directory and the file structure as a BSP Layer. Although not a strict requirement, layers in the Yocto
Project use the following well established naming convention:

 meta-<bsp_name>

The string "meta-" is prepended to the machine or platform name, which is "bsp_name" in the above
form.

The layer's base directory (meta-<bsp_name>) is the root of the BSP Layer. This root is what
you add to the BBLAYERS [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-
BBLAYERS] variable in the conf/bblayers.conf file found in the Build Directory [http://
www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory]. Adding the root
allows the OpenEmbedded build system to recognize the BSP definition and from it build an image.
Here is an example:

 BBLAYERS ?= " \
 /usr/local/src/yocto/meta \
 /usr/local/src/yocto/meta-yocto \
 /usr/local/src/yocto/meta-yocto-bsp \
 /usr/local/src/yocto/meta-mylayer \
 "

 BBLAYERS_NON_REMOVABLE ?= " \
 /usr/local/src/yocto/meta \
 /usr/local/src/yocto/meta-yocto \
 "

Some BSPs require additional layers on top of the BSP's root layer in order to be functional. For these
cases, you also need to add those layers to the BBLAYERS variable in order to build the BSP. You must
also specify in the "Dependencies" section of the BSP's README file any requirements for additional
layers and, preferably, any build instructions that might be contained elsewhere in the README file.

Some layers function as a layer to hold other BSP layers. An example of this type of layer is the meta-
intel layer. The meta-intel layer contains many individual BSP layers.

For more detailed information on layers, see the "Understanding and Creating
Layers [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#understanding-and-
creating-layers]" section of the Yocto Project Development Manual.

http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-BBLAYERS
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-BBLAYERS
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-BBLAYERS
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#understanding-and-creating-layers

Board Support Packages (BSP) - Developer's Guide

2

1.2. Example Filesystem Layout
Providing a common form allows end-users to understand and become familiar with the layout. A
common format also encourages standardization of software support of hardware.

The proposed form does have elements that are specific to the OpenEmbedded build system. It is
intended that this information can be used by other build systems besides the OpenEmbedded build
system and that it will be simple to extract information and convert it to other formats if required. The
OpenEmbedded build system, through its standard layers mechanism, can directly accept the format
described as a layer. The BSP captures all the hardware-specific details in one place in a standard
format, which is useful for any person wishing to use the hardware platform regardless of the build
system they are using.

The BSP specification does not include a build system or other tools - it is concerned with the
hardware-specific components only. At the end-distribution point, you can ship the BSP combined
with a build system and other tools. However, it is important to maintain the distinction that these
are separate components that happen to be combined in certain end products.

Before looking at the common form for the file structure inside a BSP Layer, you should be aware that
some requirements do exist in order for a BSP to be considered compliant with the Yocto Project. For
that list of requirements, see the "Released BSP Requirements" section.

Below is the common form for the file structure inside a BSP Layer. While you can use this basic form
for the standard, realize that the actual structures for specific BSPs could differ.

 meta-<bsp_name>/
 meta-<bsp_name>/<bsp_license_file>
 meta-<bsp_name>/README
 meta-<bsp_name>/README.sources
 meta-<bsp_name>/binary/<bootable_images>
 meta-<bsp_name>/conf/layer.conf
 meta-<bsp_name>/conf/machine/*.conf
 meta-<bsp_name>/recipes-bsp/*
 meta-<bsp_name>/recipes-core/*
 meta-<bsp_name>/recipes-graphics/*
 meta-<bsp_name>/recipes-kernel/linux/linux-yocto_<kernel_rev>.bbappend

Below is an example of the Crown Bay BSP:

 meta-crownbay/COPYING.MIT
 meta-crownbay/README
 meta-crownbay/README.sources
 meta-crownbay/binary/
 meta-crownbay/conf/
 meta-crownbay/conf/layer.conf
 meta-crownbay/conf/machine/
 meta-crownbay/conf/machine/crownbay.conf
 meta-crownbay/conf/machine/crownbay-noemgd.conf
 meta-crownbay/recipes-bsp/
 meta-crownbay/recipes-bsp/formfactor/
 meta-crownbay/recipes-bsp/formfactor/formfactor_0.0.bbappend
 meta-crownbay/recipes-bsp/formfactor/formfactor/
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/machconfig
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/machconfig
 meta-crownbay/recipes-graphics/
 meta-crownbay/recipes-graphics/xorg-xserver/
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config_0.1.bbappend
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/xorg.conf

Board Support Packages (BSP) - Developer's Guide

3

 meta-crownbay/recipes-kernel/
 meta-crownbay/recipes-kernel/linux/
 meta-crownbay/recipes-kernel/linux/linux-yocto-dev.bbappend
 meta-crownbay/recipes-kernel/linux/linux-yocto-rt_3.10.bbappend
 meta-crownbay/recipes-kernel/linux/linux-yocto_3.10.bbappend
 meta-crownbay/recipes-kernel/linux/linux-yocto_3.14.bbappend

The following sections describe each part of the proposed BSP format.

1.2.1. License Files

You can find these files in the BSP Layer at:

 meta-<bsp_name>/<bsp_license_file>

These optional files satisfy licensing requirements for the BSP. The type or types of files here can
vary depending on the licensing requirements. For example, in the Crown Bay BSP all licensing
requirements are handled with the COPYING.MIT file.

Licensing files can be MIT, BSD, GPLv*, and so forth. These files are recommended for the BSP but
are optional and totally up to the BSP developer.

1.2.2. README File

You can find this file in the BSP Layer at:

 meta-<bsp_name>/README

This file provides information on how to boot the live images that are optionally included in the
binary/ directory. The README file also provides special information needed for building the image.

At a minimum, the README file must contain a list of dependencies, such as the names of any
other layers on which the BSP depends and the name of the BSP maintainer with his or her contact
information.

1.2.3. README.sources File

You can find this file in the BSP Layer at:

 meta-<bsp_name>/README.sources

This file provides information on where to locate the BSP source files. For example, information
provides where to find the sources that comprise the images shipped with the BSP. Information is
also included to help you find the Metadata [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#metadata] used to generate the images that ship with the BSP.

1.2.4. Pre-built User Binaries

You can find these files in the BSP Layer at:

 meta-<bsp_name>/binary/<bootable_images>

This optional area contains useful pre-built kernels and user-space filesystem images appropriate to
the target system. This directory typically contains graphical (e.g. Sato) and minimal live images when

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#metadata

Board Support Packages (BSP) - Developer's Guide

4

the BSP tarball has been created and made available in the Yocto Project [http://www.yoctoproject.org]
website. You can use these kernels and images to get a system running and quickly get started on
development tasks.

The exact types of binaries present are highly hardware-dependent. However, a README file should
be present in the BSP Layer that explains how to use the kernels and images with the target hardware.
If pre-built binaries are present, source code to meet licensing requirements must also exist in some
form.

1.2.5. Layer Configuration File

You can find this file in the BSP Layer at:

 meta-<bsp_name>/conf/layer.conf

The conf/layer.conf file identifies the file structure as a layer, identifies the contents of the layer,
and contains information about how the build system should use it. Generally, a standard boilerplate
file such as the following works. In the following example, you would replace "bsp" and "_bsp" with
the actual name of the BSP (i.e. <bsp_name> from the example template).

 # We have a conf and classes directory, add to BBPATH
 BBPATH .= ":${LAYERDIR}"

 # We have a recipes directory, add to BBFILES
 BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
 ${LAYERDIR}/recipes-*/*/*.bbappend"

 BBFILE_COLLECTIONS += "bsp"
 BBFILE_PATTERN_bsp = "^${LAYERDIR}/"
 BBFILE_PRIORITY_bsp = "6"

To illustrate the string substitutions, here are the corresponding statements from the Crown Bay conf/
layer.conf file:

 BBFILE_COLLECTIONS += "crownbay"
 BBFILE_PATTERN_crownbay = "^${LAYERDIR}/"
 BBFILE_PRIORITY_crownbay = "6"

This file simply makes BitBake [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#bitbake-term] aware of the recipes and configuration directories. The file must exist so
that the OpenEmbedded build system can recognize the BSP.

1.2.6. Hardware Configuration Options

You can find these files in the BSP Layer at:

 meta-<bsp_name>/conf/machine/*.conf

The machine files bind together all the information contained elsewhere in the BSP into a format
that the build system can understand. If the BSP supports multiple machines, multiple machine
configuration files can be present. These filenames correspond to the values to which users have
set the MACHINE [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE]
variable.

These files define things such as the kernel package to use (PREFERRED_PROVIDER [http://
www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-PREFERRED_PROVIDER] of virtual/

http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-PREFERRED_PROVIDER
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-PREFERRED_PROVIDER
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-PREFERRED_PROVIDER

Board Support Packages (BSP) - Developer's Guide

5

kernel), the hardware drivers to include in different types of images, any special software components
that are needed, any bootloader information, and also any special image format requirements.

Each BSP Layer requires at least one machine file. However, you can supply more than one file.

This crownbay.conf file could also include a hardware "tuning" file that is commonly used to define
the package architecture and specify optimization flags, which are carefully chosen to give best
performance on a given processor.

Tuning files are found in the meta/conf/machine/include directory within the Source
Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory].
For example, the ia32-base.inc file resides in the meta/conf/machine/include directory.

To use an include file, you simply include them in the machine configuration file. For example, the
Crown Bay BSP crownbay.conf contains the following statements:

 require conf/machine/include/intel-core2-32-common.inc
 require conf/machine/include/meta-intel.inc
 require conf/machine/include/meta-intel-emgd.inc

1.2.7. Miscellaneous BSP-Specific Recipe Files
You can find these files in the BSP Layer at:

 meta-<bsp_name>/recipes-bsp/*

This optional directory contains miscellaneous recipe files for the BSP. Most notably would be the
formfactor files. For example, in the Crown Bay BSP there is the formfactor_0.0.bbappend file, which
is an append file used to augment the recipe that starts the build. Furthermore, there are machine-
specific settings used during the build that are defined by the machconfig file. In the Crown Bay
example, two machconfig files exist: one that supports the Intel® Embedded Media and Graphics
Driver (Intel® EMGD) and one that does not:

 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/machconfig
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/machconfig
 meta-crownbay/recipes-bsp/formfactor/formfactor_0.0.bbappend

Note

If a BSP does not have a formfactor entry, defaults are established according to the
formfactor configuration file that is installed by the main formfactor recipe meta/recipes-
bsp/formfactor/formfactor_0.0.bb, which is found in the Source Directory [http://
www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory].

1.2.8. Display Support Files
You can find these files in the BSP Layer at:

 meta-<bsp_name>/recipes-graphics/*

This optional directory contains recipes for the BSP if it has special requirements for graphics support.
All files that are needed for the BSP to support a display are kept here. For example, the Crown Bay
BSP's xorg.conf file detects the graphics support needed (i.e. the Intel® Embedded Media Graphics
Driver (EMGD) or the Video Electronics Standards Association (VESA) graphics):

 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config_0.1.bbappend
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/xorg.conf

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory

Board Support Packages (BSP) - Developer's Guide

6

1.2.9. Linux Kernel Configuration
You can find these files in the BSP Layer at:

 meta-<bsp_name>/recipes-kernel/linux/linux-yocto_*.bbappend

These files append your specific changes to the main kernel recipe you are using.

For your BSP, you typically want to use an existing Yocto Project kernel recipe found in
the Source Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-
directory] at meta/recipes-kernel/linux. You can append your specific changes to the kernel recipe
by using a similarly named append file, which is located in the BSP Layer (e.g. the meta-<bsp_name>/
recipes-kernel/linux directory).

Suppose you are using the linux-yocto_3.10.bb recipe to build the kernel. In other words, you have
selected the kernel in your <bsp_name>.conf file by adding these types of statements:

 PREFERRED_PROVIDER_virtual/kernel ?= "linux-yocto"
 PREFERRED_VERSION_linux-yocto ?= "3.10%"

Note
When the preferred provider is assumed by default, the PREFERRED_PROVIDER statement does
not appear in the <bsp_name>.conf file.

You would use the linux-yocto_3.10.bbappend file to append specific BSP settings to the kernel,
thus configuring the kernel for your particular BSP.

As an example, look at the existing Crown Bay BSP. The append file used is:

 meta-crownbay/recipes-kernel/linux/linux-yocto_3.10.bbappend

The following listing shows the file. Be aware that the actual commit ID strings in this example listing
might be different than the actual strings in the file from the meta-intel Git source repository.

 FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

 COMPATIBLE_MACHINE_crownbay = "crownbay"
 KMACHINE_crownbay = "crownbay"
 KBRANCH_crownbay = "standard/crownbay"
 KERNEL_FEATURES_append_crownbay = " features/drm-emgd/drm-emgd-1.18 cfg/vesafb"

 COMPATIBLE_MACHINE_crownbay-noemgd = "crownbay-noemgd"
 KMACHINE_crownbay-noemgd = "crownbay"
 KBRANCH_crownbay-noemgd = "standard/crownbay"
 KERNEL_FEATURES_append_crownbay-noemgd = " cfg/vesafb"

 LINUX_VERSION_crownbay = "3.10.35"
 SRCREV_meta_crownbay = "b6e58b33dd427fe471f8827c83e311acdf4558a4"
 SRCREV_machine_crownbay = "cee957655fe67826b2e827e2db41f156fa8f0cc4"
 SRCREV_emgd_crownbay = "42d5e4548e8e79e094fa8697949eed4cf6af00a3"

 LINUX_VERSION_crownbay-noemgd = "3.10.35"
 SRCREV_meta_crownbay-noemgd = "b6e58b33dd427fe471f8827c83e311acdf4558a4"
 SRCREV_machine_crownbay-noemgd = "cee957655fe67826b2e827e2db41f156fa8f0cc4"

 SRC_URI_crownbay = "git://git.yoctoproject.org/linux-yocto-3.10.git;protocol=git;nocheckout=1;branch=${KBRANCH},${KMETA},emgd-1.18;name=machine,meta,emgd"

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory

Board Support Packages (BSP) - Developer's Guide

7

This append file contains statements used to support the Crown Bay BSP. The file
defines machines using the COMPATIBLE_MACHINE [http://www.yoctoproject.org/docs/1.6.1/ref-
manual/ref-manual.html#var-COMPATIBLE_MACHINE] variable and uses the KMACHINE [http://
www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KMACHINE] variable to ensure the
machine name used by the OpenEmbedded build system maps to the machine name used
by the Linux Yocto kernel. The file also uses the optional KBRANCH [http://www.yoctoproject.org/
docs/1.6.1/ref-manual/ref-manual.html#var-KBRANCH] variable to ensure the build process uses the
standard/crownbay kernel branch. The KERNEL_FEATURES [http://www.yoctoproject.org/docs/1.6.1/
ref-manual/ref-manual.html#var-KERNEL_FEATURES] variable enables features specific to the
kernel (e.g. graphics support in this case). The append file points to specific commits in
the Source Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-
directory] Git repository and the meta Git repository branches to identify the exact kernel needed
to build the Crown Bay BSP. Finally, the file includes the SRC_URI [http://www.yoctoproject.org/
docs/1.6.1/ref-manual/ref-manual.html#var-SRC_URI] statement to locate the source files.

One thing missing in this particular BSP, which you will typically need when developing a BSP, is
the kernel configuration file (.config) for your BSP. When developing a BSP, you probably have a
kernel configuration file or a set of kernel configuration files that, when taken together, define the
kernel configuration for your BSP. You can accomplish this definition by putting the configurations in
a file or a set of files inside a directory located at the same level as your kernel's append file and
having the same name as the kernel's main recipe file. With all these conditions met, simply reference
those files in the SRC_URI [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-
SRC_URI] statement in the append file.

For example, suppose you had some configuration options in a file called network_configs.cfg. You
can place that file inside a directory named linux-yocto and then add a SRC_URI statement such
as the following to the append file. When the OpenEmbedded build system builds the kernel, the
configuration options are picked up and applied.

 SRC_URI += "file://network_configs.cfg"

To group related configurations into multiple files, you perform a similar procedure. Here is an example
that groups separate configurations specifically for Ethernet and graphics into their own files and
adds the configurations by using a SRC_URI statement like the following in your append file:

 SRC_URI += "file://myconfig.cfg \
 file://eth.cfg \
 file://gfx.cfg"

The FILESEXTRAPATHS [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-
FILESEXTRAPATHS] variable is in boilerplate form in the previous example in order to make it easy
to do that. This variable must be in your layer or BitBake will not find the patches or configurations
even if you have them in your SRC_URI. The FILESEXTRAPATHS variable enables the build process to
find those configuration files.

Note

Other methods exist to accomplish grouping and defining configuration options. For example,
if you are working with a local clone of the kernel repository, you could checkout the kernel's
meta branch, make your changes, and then push the changes to the local bare clone of the
kernel. The result is that you directly add configuration options to the meta branch for your
BSP. The configuration options will likely end up in that location anyway if the BSP gets added
to the Yocto Project.

In general, however, the Yocto Project maintainers take care of moving the SRC_URI-specified
configuration options to the kernel's meta branch. Not only is it easier for BSP developers
to not have to worry about putting those configurations in the branch, but having the
maintainers do it allows them to apply 'global' knowledge about the kinds of common
configuration options multiple BSPs in the tree are typically using. This allows for promotion
of common configurations into common features.

http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-COMPATIBLE_MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-COMPATIBLE_MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-COMPATIBLE_MACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KBRANCH
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KBRANCH
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KBRANCH
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KERNEL_FEATURES
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KERNEL_FEATURES
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-KERNEL_FEATURES
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-FILESEXTRAPATHS

Board Support Packages (BSP) - Developer's Guide

8

1.3. Requirements and Recommendations for
Released BSPs
Certain requirements exist for a released BSP to be considered compliant with the Yocto
Project. Additionally, recommendations also exist. This section describes the requirements and
recommendations for released BSPs.

1.3.1. Released BSP Requirements
Before looking at BSP requirements, you should consider the following:

• The requirements here assume the BSP layer is a well-formed, "legal" layer that can be added to the
Yocto Project. For guidelines on creating a layer that meets these base requirements, see the "BSP
Layers" and the "Understanding and Creating Layers" [http://www.yoctoproject.org/docs/1.6.1/dev-
manual/dev-manual.html#understanding-and-creating-layers] in the Yocto Project Development
Manual.

• The requirements in this section apply regardless of how you ultimately package a BSP. You should
consult the packaging and distribution guidelines for your specific release process. For an example
of packaging and distribution requirements, see the "Third Party BSP Release Process [https://
wiki.yoctoproject.org/wiki/Third_Party_BSP_Release_Process]" wiki page.

• The requirements for the BSP as it is made available to a developer are completely independent
of the released form of the BSP. For example, the BSP Metadata can be contained within a Git
repository and could have a directory structure completely different from what appears in the
officially released BSP layer.

• It is not required that specific packages or package modifications exist in the BSP layer, beyond the
requirements for general compliance with the Yocto Project. For example, no requirement exists
dictating that a specific kernel or kernel version be used in a given BSP.

Following are the requirements for a released BSP that conforms to the Yocto Project:

• Layer Name: The BSP must have a layer name that follows the Yocto Project standards. For
information on BSP layer names, see the "BSP Layers" section.

• File System Layout: When possible, use the same directory names in your BSP layer as
listed in the recipes.txt file. In particular, you should place recipes (.bb files) and recipe
modifications (.bbappend files) into recipes-* subdirectories by functional area as outlined
in recipes.txt. If you cannot find a category in recipes.txt to fit a particular recipe,
you can make up your own recipes-* subdirectory. You can find recipes.txt in the
meta directory of the Source Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#source-directory], or in the OpenEmbedded Core Layer (openembedded-core) found
at http://git.openembedded.org/openembedded-core/tree/meta.

Within any particular recipes-* category, the layout should match what is found in the
OpenEmbedded Core Git repository (openembedded-core) or the Source Directory (poky). In
other words, make sure you place related files in appropriately related recipes-* subdirectories
specific to the recipe's function, or within a subdirectory containing a set of closely-related
recipes. The recipes themselves should follow the general guidelines for recipes used in the Yocto
Project found in the "Yocto Recipe and Patch Style Guide [https://wiki.yoctoproject.org/wiki/Recipe_
%26_Patch_Style_Guide]".

• License File: You must include a license file in the meta-<bsp_name> directory. This license covers the
BSP Metadata as a whole. You must specify which license to use since there is no default license if
one is not specified. See the COPYING.MIT [http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-
fri2/COPYING.MIT] file for the Fish River Island 2 BSP in the meta-fri2 BSP layer as an example.

• README File: You must include a README file in the meta-<bsp_name> directory. See the README
[http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/README] file for the Fish River Island
2 BSP in the meta-fri2 BSP layer as an example.

At a minimum, the README file should contain the following:

• A brief description about the hardware the BSP targets.

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#understanding-and-creating-layers
https://wiki.yoctoproject.org/wiki/Third_Party_BSP_Release_Process
https://wiki.yoctoproject.org/wiki/Third_Party_BSP_Release_Process
https://wiki.yoctoproject.org/wiki/Third_Party_BSP_Release_Process
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://git.openembedded.org/openembedded-core/tree/meta
https://wiki.yoctoproject.org/wiki/Recipe_%26_Patch_Style_Guide
https://wiki.yoctoproject.org/wiki/Recipe_%26_Patch_Style_Guide
https://wiki.yoctoproject.org/wiki/Recipe_%26_Patch_Style_Guide
http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/COPYING.MIT
http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/COPYING.MIT
http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/COPYING.MIT
http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/README
http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/README

Board Support Packages (BSP) - Developer's Guide

9

• A list of all the dependencies on which a BSP layer depends. These dependencies are typically a
list of required layers needed to build the BSP. However, the dependencies should also contain
information regarding any other dependencies the BSP might have.

• Any required special licensing information. For example, this information includes information
on special variables needed to satisfy a EULA, or instructions on information needed to build or
distribute binaries built from the BSP Metadata.

• The name and contact information for the BSP layer maintainer. This is the person to whom
patches and questions should be sent. For information on how to find the right person,
see the "How to Submit a Change [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#how-to-submit-a-change]" section in the Yocto Project Development Manual.

• Instructions on how to build the BSP using the BSP layer.

• Instructions on how to boot the BSP build from the BSP layer.

• Instructions on how to boot the binary images contained in the binary directory, if present.

• Information on any known bugs or issues that users should know about when either building or
booting the BSP binaries.

• README.sources File: You must include a README.sources in the meta-<bsp_name> directory. This
file specifies exactly where you can find the sources used to generate the binary images contained
in the binary directory, if present. See the README.sources [http://git.yoctoproject.org/cgit.cgi/
meta-intel/tree/meta-fri2/README.sources] file for the Fish River Island 2 BSP in the meta-fri2 BSP
layer as an example.

• Layer Configuration File: You must include a conf/layer.conf in the meta-<bsp_name> directory.
This file identifies the meta-<bsp_name> BSP layer as a layer to the build system.

• Machine Configuration File: You must include one or more conf/machine/<bsp_name>.conf files in
the meta-<bsp_name> directory. These configuration files define machine targets that can be built
using the BSP layer. Multiple machine configuration files define variations of machine configurations
that are supported by the BSP. If a BSP supports multiple machine variations, you need to adequately
describe each variation in the BSP README file. Do not use multiple machine configuration files to
describe disparate hardware. If you do have very different targets, you should create separate BSP
layers for each target.

Note
It is completely possible for a developer to structure the working repository as a
conglomeration of unrelated BSP files, and to possibly generate BSPs targeted for release
from that directory using scripts or some other mechanism (e.g. meta-yocto-bsp layer).
Such considerations are outside the scope of this document.

1.3.2. Released BSP Recommendations
Following are recommendations for a released BSP that conforms to the Yocto Project:

• Bootable Images: BSP releases can contain one or more bootable images. Including bootable images
allows users to easily try out the BSP on their own hardware.

In some cases, it might not be convenient to include a bootable image. In this case, you might want
to make two versions of the BSP available: one that contains binary images, and one that does not.
The version that does not contain bootable images avoids unnecessary download times for users
not interested in the images.

If you need to distribute a BSP and include bootable images or build kernel and filesystems meant
to allow users to boot the BSP for evaluation purposes, you should put the images and artifacts
within a binary/ subdirectory located in the meta-<bsp_name> directory.

Note
If you do include a bootable image as part of the BSP and the image was built by software
covered by the GPL or other open source licenses, it is your responsibility to understand
and meet all licensing requirements, which could include distribution of source files.

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#how-to-submit-a-change
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#how-to-submit-a-change
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#how-to-submit-a-change
http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/README.sources
http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/README.sources
http://git.yoctoproject.org/cgit.cgi/meta-intel/tree/meta-fri2/README.sources

Board Support Packages (BSP) - Developer's Guide

10

• Use a Yocto Linux Kernel: Kernel recipes in the BSP should be based on a Yocto Linux kernel. Basing
your recipes on these kernels reduces the costs for maintaining the BSP and increases its scalability.
See the Yocto Linux Kernel category in the Source Repositories [http://git.yoctoproject.org/
cgit.cgi] for these kernels.

1.4. Customizing a Recipe for a BSP
If you plan on customizing a recipe for a particular BSP, you need to do the following:

• Create a .bbappend file for the modified recipe. For information on using append
files, see the "Using .bbappend Files [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#using-bbappend-files]" section in the Yocto Project Development Manual.

• Ensure your directory structure in the BSP layer that supports your machine is such that it can be
found by the build system. See the example later in this section for more information.

• Put the append file in a directory whose name matches the machine's name and is located in an
appropriate sub-directory inside the BSP layer (i.e. recipes-bsp, recipes-graphics, recipes-
core, and so forth).

• Place the BSP-specific files in the directory named for your machine inside the BSP layer.

Following is a specific example to help you better understand the process. Consider an example
that customizes a recipe by adding a BSP-specific configuration file named interfaces to the init-
ifupdown_1.0.bb recipe for machine "xyz". Do the following:

1. Edit the init-ifupdown_1.0.bbappend file so that it contains the following:

 FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

The append file needs to be in the meta-xyz/recipes-core/init-ifupdown directory.

2. Create and place the new interfaces configuration file in the BSP's layer here:

 meta-xyz/recipes-core/init-ifupdown/files/xyz/interfaces

The FILESEXTRAPATHS [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-
FILESEXTRAPATHS] variable in the append files extends the search path the build system uses to
find files during the build. Consequently, for this example you need to have the files directory
in the same location as your append file.

1.5. BSP Licensing Considerations
In some cases, a BSP contains separately licensed Intellectual Property (IP) for a component or
components. For these cases, you are required to accept the terms of a commercial or other type of
license that requires some kind of explicit End User License Agreement (EULA). Once the license is
accepted, the OpenEmbedded build system can then build and include the corresponding component
in the final BSP image. If the BSP is available as a pre-built image, you can download the image after
agreeing to the license or EULA.

You could find that some separately licensed components that are essential for normal operation
of the system might not have an unencumbered (or free) substitute. Without these essential
components, the system would be non-functional. Then again, you might find that other licensed
components that are simply 'good-to-have' or purely elective do have an unencumbered, free
replacement component that you can use rather than agreeing to the separately licensed component.
Even for components essential to the system, you might find an unencumbered component that is
not identical but will work as a less-capable version of the licensed version in the BSP recipe.

For cases where you can substitute a free component and still maintain the system's functionality,
the "Downloads" page from the Yocto Project website's [http://www.yoctoproject.org] makes available
de-featured BSPs that are completely free of any IP encumbrances. For these cases, you can use the
substitution directly and without any further licensing requirements. If present, these fully de-featured

http://git.yoctoproject.org/cgit.cgi
http://git.yoctoproject.org/cgit.cgi
http://git.yoctoproject.org/cgit.cgi
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#using-bbappend-files
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#using-bbappend-files
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#using-bbappend-files
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org
http://www.yoctoproject.org

Board Support Packages (BSP) - Developer's Guide

11

BSPs are named appropriately different as compared to the names of the respective encumbered
BSPs. If available, these substitutions are your simplest and most preferred options. Use of these
substitutions of course assumes the resulting functionality meets system requirements.

If however, a non-encumbered version is unavailable or it provides unsuitable functionality or quality,
you can use an encumbered version.

A couple different methods exist within the OpenEmbedded build system to satisfy the licensing
requirements for an encumbered BSP. The following list describes them in order of preference:

1. Use the LICENSE_FLAGS variable to define the recipes that have commercial or other types
of specially-licensed packages: For each of those recipes, you can specify a matching license
string in a local.conf variable named LICENSE_FLAGS_WHITELIST. Specifying the matching
license string signifies that you agree to the license. Thus, the build system can build the
corresponding recipe and include the component in the image. See the "Enabling Commercially
Licensed Recipes [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#enabling-
commercially-licensed-recipes]" section in the Yocto Project Reference Manual for details on how
to use these variables.

If you build as you normally would, without specifying any recipes in the
LICENSE_FLAGS_WHITELIST, the build stops and provides you with the list of recipes that you have
tried to include in the image that need entries in the LICENSE_FLAGS_WHITELIST. Once you enter
the appropriate license flags into the whitelist, restart the build to continue where it left off. During
the build, the prompt will not appear again since you have satisfied the requirement.

Once the appropriate license flags are on the white list in the LICENSE_FLAGS_WHITELIST variable,
you can build the encumbered image with no change at all to the normal build process.

2. Get a pre-built version of the BSP: You can get this type of BSP by visiting the "Downloads"
page of the Yocto Project website [http://www.yoctoproject.org]. You can download BSP tarballs
that contain proprietary components after agreeing to the licensing requirements of each of
the individually encumbered packages as part of the download process. Obtaining the BSP this
way allows you to access an encumbered image immediately after agreeing to the click-through
license agreements presented by the website. Note that if you want to build the image yourself
using the recipes contained within the BSP tarball, you will still need to create an appropriate
LICENSE_FLAGS_WHITELIST to match the encumbered recipes in the BSP.

Note
Pre-compiled images are bundled with a time-limited kernel that runs for a predetermined
amount of time (10 days) before it forces the system to reboot. This limitation is meant to
discourage direct redistribution of the image. You must eventually rebuild the image if you
want to remove this restriction.

1.6. Using the Yocto Project's BSP Tools
The Yocto Project includes a couple of tools that enable you to create a BSP layer from scratch and
do basic configuration and maintenance of the kernel without ever looking at a Metadata file. These
tools are yocto-bsp and yocto-kernel, respectively.

The following sections describe the common location and help features as well as provide details for
the yocto-bsp and yocto-kernel tools.

1.6.1. Common Features
Designed to have a command interface somewhat like Git [http://www.yoctoproject.org/docs/1.6.1/
dev-manual/dev-manual.html#git], each tool is structured as a set of sub-commands under a top-
level command. The top-level command (yocto-bsp or yocto-kernel) itself does nothing but invoke
or provide help on the sub-commands it supports.

Both tools reside in the scripts/ subdirectory of the Source Directory [http://www.yoctoproject.org/
docs/1.6.1/dev-manual/dev-manual.html#source-directory]. Consequently, to use the scripts, you
must source the environment just as you would when invoking a build:

 $ source oe-init-build-env [build_dir]

http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#enabling-commercially-licensed-recipes
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#enabling-commercially-licensed-recipes
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#enabling-commercially-licensed-recipes
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#enabling-commercially-licensed-recipes
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory

Board Support Packages (BSP) - Developer's Guide

12

The most immediately useful function is to get help on both tools. The built-in help system makes it
easy to drill down at any time and view the syntax required for any specific command. Simply enter
the name of the command with the help switch:

 $ yocto-bsp help
 Usage:

 Create a customized Yocto BSP layer.

 usage: yocto-bsp [--version] [--help] COMMAND [ARGS]

 Current 'yocto-bsp' commands are:
 create Create a new Yocto BSP
 list List available values for options and BSP properties

 See 'yocto-bsp help COMMAND' for more information on a specific command.

 Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -D, --debug output debug information

Similarly, entering just the name of a sub-command shows the detailed usage for that sub-command:

 $ yocto-bsp create

 Usage:

 Create a new Yocto BSP

 usage: yocto-bsp create <bsp-name> <karch> [-o <DIRNAME> | --outdir <DIRNAME>]
 [-i <JSON PROPERTY FILE> | --infile <JSON PROPERTY_FILE>]

 This command creates a Yocto BSP based on the specified parameters.
 The new BSP will be a new Yocto BSP layer contained by default within
 the top-level directory specified as 'meta-bsp-name'. The -o option
 can be used to place the BSP layer in a directory with a different
 name and location.

 ...

For any sub-command, you can use the word "help" option just before the sub-command to get more
extensive documentation:

 $ yocto-bsp help create

 NAME
 yocto-bsp create - Create a new Yocto BSP

 SYNOPSIS
 yocto-bsp create <bsp-name> <karch> [-o <DIRNAME> | --outdir <DIRNAME>]
 [-i <JSON PROPERTY FILE> | --infile <JSON PROPERTY_FILE>]

 DESCRIPTION
 This command creates a Yocto BSP based on the specified
 parameters. The new BSP will be a new Yocto BSP layer contained
 by default within the top-level directory specified as
 'meta-bsp-name'. The -o option can be used to place the BSP layer

Board Support Packages (BSP) - Developer's Guide

13

 in a directory with a different name and location.

 The value of the 'karch' parameter determines the set of files
 that will be generated for the BSP, along with the specific set of
 'properties' that will be used to fill out the BSP-specific
 portions of the BSP. The possible values for the 'karch' parameter
 can be listed via 'yocto-bsp list karch'.

 ...

Now that you know where these two commands reside and how to access information on them, you
should find it relatively straightforward to discover the commands necessary to create a BSP and
perform basic kernel maintenance on that BSP using the tools.

Note
You can also use the yocto-layer tool to create a "generic" layer. For
information on this tool, see the "Creating a General Layer Using the yocto-
layer Script [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#creating-
a-general-layer-using-the-yocto-layer-script]" section in the Yocto Project Development
Guide.

The next sections provide a concrete starting point to expand on a few points that might not be
immediately obvious or that could use further explanation.

1.6.2. Creating a new BSP Layer Using the yocto-bsp
Script
The yocto-bsp script creates a new BSP layer for any architecture supported by the Yocto Project,
as well as QEMU versions of the same. The default mode of the script's operation is to prompt you
for information needed to generate the BSP layer.

For the current set of BSPs, the script prompts you for various important parameters such as:

• The kernel to use

• The branch of that kernel to use (or re-use)

• Whether or not to use X, and if so, which drivers to use

• Whether to turn on SMP

• Whether the BSP has a keyboard

• Whether the BSP has a touchscreen

• Remaining configurable items associated with the BSP

You use the yocto-bsp create sub-command to create a new BSP layer. This command requires
you to specify a particular kernel architecture (karch) on which to base the BSP. Assuming you
have sourced the environment, you can use the yocto-bsp list karch sub-command to list the
architectures available for BSP creation as follows:

 $ yocto-bsp list karch
 Architectures available:
 powerpc
 i386
 x86_64
 arm
 qemu
 mips

The remainder of this section presents an example that uses myarm as the machine name and qemu
as the machine architecture. Of the available architectures, qemu is the only architecture that causes

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#creating-a-general-layer-using-the-yocto-layer-script
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#creating-a-general-layer-using-the-yocto-layer-script
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#creating-a-general-layer-using-the-yocto-layer-script
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#creating-a-general-layer-using-the-yocto-layer-script

Board Support Packages (BSP) - Developer's Guide

14

the script to prompt you further for an actual architecture. In every other way, this architecture is
representative of how creating a BSP for an actual machine would work. The reason the example
uses this architecture is because it is an emulated architecture and can easily be followed without
requiring actual hardware.

As the yocto-bsp create command runs, default values for the prompts appear in brackets. Pressing
enter without supplying anything on the command line or pressing enter with an invalid response
causes the script to accept the default value. Once the script completes, the new meta-myarm
BSP layer is created in the current working directory. This example assumes you have sourced the
oe-init-build-env [http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-
core-script] setup script.

Following is the complete example:

 $ yocto-bsp create myarm qemu
 Checking basic git connectivity...
 Done.

 Which qemu architecture would you like to use? [default: i386]
 1) i386 (32-bit)
 2) x86_64 (64-bit)
 3) ARM (32-bit)
 4) PowerPC (32-bit)
 5) MIPS (32-bit)
 3
 Would you like to use the default (3.10) kernel? (y/n) [default: y] y
 Do you need a new machine branch for this BSP (the alternative is to re-use an existing branch)? [y/n] [default: y]
 Getting branches from remote repo git://git.yoctoproject.org/linux-yocto-3.10.git...
 Please choose a machine branch to base your new BSP branch on: [default: standard/base]
 1) standard/arm-versatile-926ejs
 2) standard/base
 3) standard/beagleboard
 4) standard/beaglebone
 5) standard/ck
 6) standard/crownbay
 7) standard/edgerouter
 8) standard/emenlow
 9) standard/fri2
 10) standard/fsl-mpc8315e-rdb
 11) standard/mti-malta32
 12) standard/mti-malta64
 13) standard/qemuppc
 14) standard/routerstationpro
 15) standard/sys940x
 1
 Would you like SMP support? (y/n) [default: y]
 Does your BSP have a touchscreen? (y/n) [default: n]
 Does your BSP have a keyboard? (y/n) [default: y]

 New qemu BSP created in meta-myarm

Take a closer look at the example now:

1. For the QEMU architecture, the script first prompts you for which emulated architecture to use. In
the example, we use the ARM architecture.

2. The script then prompts you for the kernel. The default 3.14 kernel is acceptable. So, the example
accepts the default. If you enter 'n', the script prompts you to further enter the kernel you do want
to use.

3. Next, the script asks whether you would like to have a new branch created especially for
your BSP in the local Linux Yocto Kernel [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-
manual.html#local-kernel-files] Git repository . If not, then the script re-uses an existing branch.

http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#structure-core-script
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#local-kernel-files
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#local-kernel-files
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#local-kernel-files

Board Support Packages (BSP) - Developer's Guide

15

In this example, the default (or "yes") is accepted. Thus, a new branch is created for the BSP rather
than using a common, shared branch. The new branch is the branch committed to for any patches
you might later add. The reason a new branch is the default is that typically new BSPs do require
BSP-specific patches. The tool thus assumes that most of time a new branch is required.

4. Regardless of which choice you make in the previous step, you are now given the opportunity to
select a particular machine branch on which to base your new BSP-specific machine branch (or to
re-use if you had elected to not create a new branch). Because this example is generating an ARM-
based BSP, the example uses #1 at the prompt, which selects the ARM-versatile branch.

5. The remainder of the prompts are routine. Defaults are accepted for each.

6. By default, the script creates the new BSP Layer in the current working directory of the
Source Directory [http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-
directory], which is poky in this case.

Once the BSP Layer is created, you must add it to your bblayers.conf file. Here is an example:

 BBLAYERS = ? " \
 /usr/local/src/yocto/meta \
 /usr/local/src/yocto/meta-yocto \
 /usr/local/src/yocto/meta-yocto-bsp \
 /usr/local/src/yocto/meta-myarm \
 "

 BBLAYERS_NON_REMOVABLE ?= " \
 /usr/local/src/yocto/meta \
 /usr/local/src/yocto/meta-yocto \
 "

Adding the layer to this file allows the build system to build the BSP and the yocto-kernel tool to be
able to find the layer and other Metadata it needs on which to operate.

1.6.3. Managing Kernel Patches and Config Items with
yocto-kernel
Assuming you have created a BSP Layer using yocto-bsp and you added it to your BBLAYERS
[http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-BBLAYERS] variable in the
bblayers.conf file, you can now use the yocto-kernel script to add patches and configuration items
to the BSP's kernel.

The yocto-kernel script allows you to add, remove, and list patches and kernel config settings to
a BSP's kernel .bbappend file. All you need to do is use the appropriate sub-command. Recall that
the easiest way to see exactly what sub-commands are available is to use the yocto-kernel built-
in help as follows:

 $ yocto-kernel
 Usage:

 Modify and list Yocto BSP kernel config items and patches.

 usage: yocto-kernel [--version] [--help] COMMAND [ARGS]

 Current 'yocto-kernel' commands are:
 config list List the modifiable set of bare kernel config options for a BSP
 config add Add or modify bare kernel config options for a BSP
 config rm Remove bare kernel config options from a BSP
 patch list List the patches associated with a BSP
 patch add Patch the Yocto kernel for a BSP
 patch rm Remove patches from a BSP
 feature list List the features used by a BSP

http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-BBLAYERS
http://www.yoctoproject.org/docs/1.6.1/ref-manual/ref-manual.html#var-BBLAYERS

Board Support Packages (BSP) - Developer's Guide

16

 feature add Have a BSP use a feature
 feature rm Have a BSP stop using a feature
 features list List the features available to BSPs
 feature describe Describe a particular feature
 feature create Create a new BSP-local feature
 feature destroy Remove a BSP-local feature

 See 'yocto-kernel help COMMAND' for more information on a specific command.

 Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -D, --debug output debug information

The yocto-kernel patch add sub-command allows you to add a patch to a BSP. The following
example adds two patches to the myarm BSP:

 $ yocto-kernel patch add myarm ~/test.patch
 Added patches:
 test.patch

 $ yocto-kernel patch add myarm ~/yocto-testmod.patch
 Added patches:
 yocto-testmod.patch

Note
Although the previous example adds patches one at a time, it is possible to add multiple
patches at the same time.

You can verify patches have been added by using the yocto-kernel patch list sub-command.
Here is an example:

 $ yocto-kernel patch list myarm
 The current set of machine-specific patches for myarm is:
 1) test.patch
 2) yocto-testmod.patch

You can also use the yocto-kernel script to remove a patch using the yocto-kernel patch rm sub-
command. Here is an example:

 $ yocto-kernel patch rm myarm
 Specify the patches to remove:
 1) test.patch
 2) yocto-testmod.patch
 1
 Removed patches:
 test.patch

Again, using the yocto-kernel patch list sub-command, you can verify that the patch was in
fact removed:

 $ yocto-kernel patch list myarm
 The current set of machine-specific patches for myarm is:
 1) yocto-testmod.patch

Board Support Packages (BSP) - Developer's Guide

17

In a completely similar way, you can use the yocto-kernel config add sub-command to add one
or more kernel config item settings to a BSP. The following commands add a couple of config items
to the myarm BSP:

 $ yocto-kernel config add myarm CONFIG_MISC_DEVICES=y
 Added items:
 CONFIG_MISC_DEVICES=y

 $ yocto-kernel config add myarm CONFIG_YOCTO_TESTMOD=y
 Added items:
 CONFIG_YOCTO_TESTMOD=y

Note
Although the previous example adds config items one at a time, it is possible to add multiple
config items at the same time.

You can list the config items now associated with the BSP. Doing so shows you the config items you
added as well as others associated with the BSP:

 $ yocto-kernel config list myarm
 The current set of machine-specific kernel config items for myarm is:
 1) CONFIG_MISC_DEVICES=y
 2) CONFIG_YOCTO_TESTMOD=y

Finally, you can remove one or more config items using the yocto-kernel config rm sub-command
in a manner completely analogous to yocto-kernel patch rm.

	Yocto Project Board Support Package Developer's Guide
	Table of Contents
	Chapter 1. Board Support Packages (BSP) - Developer's Guide
	1.1. BSP Layers
	1.2. Example Filesystem Layout
	1.2.1. License Files
	1.2.2. README File
	1.2.3. README.sources File
	1.2.4. Pre-built User Binaries
	1.2.5. Layer Configuration File
	1.2.6. Hardware Configuration Options
	1.2.7. Miscellaneous BSP-Specific Recipe Files
	1.2.8. Display Support Files
	1.2.9. Linux Kernel Configuration

	1.3. Requirements and Recommendations for Released BSPs
	1.3.1. Released BSP Requirements
	1.3.2. Released BSP Recommendations

	1.4. Customizing a Recipe for a BSP
	1.5. BSP Licensing Considerations
	1.6. Using the Yocto Project's BSP Tools
	1.6.1. Common Features
	1.6.2. Creating a new BSP Layer Using the yocto-bsp Script
	1.6.3. Managing Kernel Patches and Config Items with yocto-kernel

